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ABSTRACT

By deriving analytical solutions to radiative–convective equilibrium (RCE), it is shownmathematically that

convective available potential energy (CAPE) exhibits Clausius–Clapeyron (CC) scaling over a wide range of

surface temperatures up to 310K. Above 310K, CAPE deviates from CC scaling and even decreases with

warming at very high surface temperatures. At the surface temperature of the current tropics, the analytical

solutions predict that CAPE increases at a rate of about 6%–7%per kelvin of surface warming. The analytical

solutions also provide insight on how the tropopause height and stratospheric humidity change with warming.

Changes in the tropopause height exhibit CC scaling, with the tropopause rising by about 400m per kelvin of

surface warming at current tropical temperatures and by about 1–2 kmK21 at surface temperatures in the

range of 320–340K. The specific humidity of the stratosphere exhibits super-CC scaling at temperatures

moderately warmer than the current tropics. With a surface temperature of the current tropics, the strato-

spheric specific humidity increases by about 6% per kelvin of surface warming, but the rate of increase is as

high as 30%K21 at warmer surface temperatures.

1. Introduction

Convective available potential energy (CAPE), which

is a function of the atmosphere’s temperature profile

and near-surface humidity, is the maximum specific

vertical kinetic energy w2/2 that storm clouds can theo-

retically attain while rising. CAPE plays a critical role in

the prediction of severe weather (Johns and Doswell III

1992; Brooks et al. 1994; Rasmussen and Blanchard

1998; Rasmussen 2003; Brooks et al. 2003) and lightning

(Williams et al. 1992, 2002; Pawar et al. 2012; Murugavel

et al. 2014; Romps et al. 2014). Of particular importance,

therefore, is the question of how CAPEwill change with

global warming.

Global climate models predict robust increases in

midlatitude CAPE and associated increases in the oc-

currence of severe weather (Trapp et al. 2007, 2009;

Diffenbaugh et al. 2013; Seeley and Romps 2015a) and

the frequency of lightning strikes (Romps et al. 2014). In

the tropics, global climate models predict an increase

in CAPE with surface temperature on the order of

10%K21 (Sobel and Camargo 2011) and cloud-resolving

simulations report similar sensitivities: 8% (Romps

2011)1, 8% (Muller et al. 2011), 12% (Singh andO’Gorman

2013, hereafter SO13), and 7%K21 (Seeley and

Romps 2015b).

This strong sensitivity of CAPE to temperature is

reminiscent of the Clausius–Clapeyron (CC) scaling of

specific humidity, which, at constant relative humidity,

increases at 6%–7%K21 in the lower tropical tropo-

sphere. But what is the connection, if any, between the

Clausius–Clapeyron scaling of water vapor and the rapid

increase in CAPE? A common hand-waving argument

goes like this: the condensation of water vapor allows

clouds to maintain their buoyancy as they rise, so a

fractional increase in available water vapor should lead

to the same fractional increase in buoyancy and, there-

fore, CAPE. This argument is wholly unsatisfactory

because it is devoid of physics and is in no way obviously

true. For this argument to be satisfactory, wewould need

to imagine an atmosphere with a dry adiabatic lapse

rate. In this imaginary world, an increase of 6%–7%K21
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in near-surface water vapor would obviously lead to a

comparable increase in the buoyancy of moist adia-

batic clouds in the middle and upper troposphere.

Of course, we do not live in such a world. Therefore,

if we are to make any real progress on understanding

whether CAPE exhibits Clausius–Clapeyron scal-

ing, we must first develop a comprehensive theory

for CAPE.

Over the past 20 yr, three different theories have been

advanced for CAPE: a theory based on the entropy

budget (Rennó and Ingersoll 1996; Emanuel and Bister

1996), a theory based on the two scale heights of water

(Mapes 2001), and a theory based on zero-buoyancy

convection (SO13). We will briefly review these here.

We will see how the first was disproved, why the second

faces substantial difficulties, and why the third is most

likely correct.

The first theory for CAPE was proposed simulta-

neously by Rennó and Ingersoll (1996) and Emanuel

and Bister (1996). In this theory, the convecting atmo-

sphere is viewed as a heat engine with heat added at the

surface temperature Ts, heat removed at the colder ra-

diative temperature Tr, and clouds performing work in

the process of moving heat from Ts to Tr. By constructing

a simple entropy budget, we arrive at

MCAPE’hQ , (1)

where M is the convective mass flux, Q is the net radi-

ative cooling of the atmosphere, and h5 12Tr/Ts is the

Carnot efficiency. By prescribing an updraft area frac-

tion and relatingM to the speed given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

p
, this

can be recast as an explicit expression for CAPE. Un-

fortunately, several problems render this theory un-

tenable. For one, the theory ignores the large entropy

source due to the diffusion of water vapor (Pauluis and

Held 2002a) or, equivalently, the fact that condensa-

tional heating occurs at a significantly colder tempera-

ture than the surface (Romps 2008). Also, clouds must

compete for the entropically available work with the

frictional dissipation of falling condensates (Pauluis

et al. 2000) or, when the entropy budget is written in

another form, with the work required to lift both con-

densates and water vapor (Romps 2008). Furthermore,

clouds are highly entraining (Kuang and Bretherton

2006; Fierro et al. 2009; Romps andKuang 2010), so they

do not attain the buoyancies predicted by the undiluted

ascent used to calculate CAPE.

The second theory, proposed by Mapes (2001), pos-

tulates that CAPE is present because of the mismatch

between the profile of latent heating of an adiabatic

parcel (which heats at a mean height of Hl) and the

profile of radiative cooling (which cools at a mean height

of Hr). According to this theory, the mismatch between

Hl and Hr must be made up by positive sensible fluxes

from Hl to Hr. Positive sensible fluxes are accom-

plished by having updrafts that are warmer and,

therefore, more buoyant than the environment. As-

suming that clouds are nonentraining, CAPE is then

equal to the vertical integral of cloud buoyancy. As

shown in appendix A, we can then relate cloud

buoyancy to the sensible heat fluxes and then use the

energy budget to obtain

MCAPE’h0Q , (2)

where h0 5 g(Hr 2Hl)/cpT0 and T0 is a typical tropo-

spheric temperature. While there is no doubt that the

energy budget of the troposphere must be closed and

that sensible heat fluxes play an important role, there are

several reasons to doubt Eq. (2) and, for that matter, to

doubt that the energy budget places a significant con-

straint on CAPE at all. First, as noted above, most

convecting clouds are highly entraining, so their buoy-

ancy b does not equal the buoyancy of the nonentraining

parcel used to calculate CAPE. Clouds that are either

nonentraining or nearly nonentraining are likely too

infrequent to be dominant players in the atmospheric

energy budget, and this suggests that CAPE is unlikely

to be constrained by the energy budget. Second, the

energy budget of the atmosphere is much more com-

plicated than simply radiation, condensation in non-

entraining parcels, and sensible fluxes. Evaporation of

condensates is a dominant term in the energy budget.

With typical precipitation efficiencies around 25%

(Pauluis and Held 2002b; Romps 2011), the gross con-

densational heating C and the gross evaporative cooling

E are related to each other by (C2E)/C5 25%, and the

net radiative cooling Q is related to them both by

Q5C2E. Solving for E in terms of Q, we find that

E5 3Q, so the evaporative cooling is 3 times larger than

the radiative cooling. The vertical structure of gross

cooling (radiative plus evaporative) is, therefore, dom-

inated by evaporation, and any theory for CAPE that

relies on the vertical structure of radiative cooling alone

is, at best, incomplete. Third, a theory for CAPE that is

based on the need to move sensible heat from a warm

place to a cold place will be closely related to the heat-

engine perspective of the atmosphere, which can be

described by the entropy budget. The entropy budget,

however, does not appear to be a promising starting

point for developing a theory of CAPE, since the dissi-

pation of kinetic energy (produced by the work of

buoyant ascent) is two orders of magnitude smaller than

the dominant terms in the entropy budget (Pauluis and

Held 2002b; Romps 2008).
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The third theory advanced by SO13 dispenses with the

heat-engine perspective altogether. This theory begins

with the observation that most convecting clouds are

highly entraining and, therefore, have buoyancies that

are a small fraction of the buoyancy of a theoretical

nonentraining parcel. To illustrate this fact, note that a

typical value of CAPE in the deeply convecting tropics is

3000 J kg21 (e.g., Williams and Renno 1993). Approxi-

mating CAPE asHgDT/T, whereH’ 104m is the depth

of the troposphere, g’ 10m s22, and T’ 300K, we find

that the temperature excess of a lifted undiluted parcel is

DT ’ 10K. On the other hand, the typical buoyancy of

tropical deep convection is in the range of 0.3–0.5K [see

Fig. 2 of Romps and Öktem (2015)]. The smallness of

typical cloud buoyancies relative to the buoyancies of

undiluted parcels suggests that CAPE can be un-

derstood by approximating typical cloud buoyancies as

zero. Note that, with zero buoyancy, these clouds can do

no work, so there is no room for a heat engine in

this theory.

The zero-buoyancy approximation allows CAPE to

be calculated numerically for radiative–convective

equilibrium (RCE) so long as the relative humidity

and the level of neutral buoyancy are specified. As

shown by SO13, the zero-buoyancy approximation can

be used to predict profiles of nonentraining-parcel

buoyancy and values of CAPE that are strikingly simi-

lar to those diagnosed from cloud-resolving simulations

of RCE. This theory was further validated by Seeley and

Romps (2015b), who showed that the zero-buoyancy

approximation accurately predicts the changes in CAPE

caused by both variations in relative humidity and in

surface temperature.

Building on the initial success of SO13, Romps (2014a,

hereafter abbreviated as R14) combined the zero-

buoyancy approximation with the bulk-plume equa-

tions, which approximate updrafts and the environment

as homogeneous at each height. Whereas the theory of

SO13 must be fed the profile of relative humidity as an

input, the theory of R14 predicts the RCE profiles of

both temperature and relative humidity. In particular,

this theory makes predictions for how the profile of

relative humidity changes with warming, and these pre-

dictions were validated by R14 against cloud-resolving

simulations.

As in the work of SO13, the theory of R14 comprises a

set of equations that must be integrated upward in

height numerically. While not difficult to integrate, the

fact that the solutions are numerical, rather than ana-

lytical, makes it difficult to glean insights from them. In

this paper, analytical solutions are sought to the equa-

tions of R14. Section 2 presents these solutions, which

include an analytical expression for CAPE in RCE.

Section 3 explores some of the implications of these

solutions for the height of the tropopause, the specific

humidity of the tropical stratosphere, and, of course, the

scaling of CAPE with temperature.

2. Theory

This section presents analytical solutions for the

thermodynamic structure of radiative–convective equi-

librium. The derivations, which are given in appendix B,

build on the work of R14. In short, R14 uses the zero-

buoyancy bulk-plume equations to derive expressions

for relative humidity and the lapse rate. As in R14, we

assume that the convective mass flux M and precipita-

tion efficiency (PE) are all constant throughout the

troposphere. Here, PE(z) is defined to be the ratio of net

condensation to gross condensation at height z. In a

departure from R14, we assume that the relative hu-

midity (RH) is constant throughout the troposphere. This

assumption is made to simplify the problem and tomake

it analytically soluble, but it is not imposed by intro-

ducing artificial sources and sinks of water. Instead, we

require that the relative humidity, precipitation effi-

ciency, fractional entrainment rate «, and fractional

detrainment rate d give an internally consistent and

closed water budget.

a. Thermodynamic profiles

As shown in appendix B, the constancy ofM, RH, and

PE implies that « and d are equal to each other and

proportional to the fractional lapse rate of saturation

specific humidity g[2›z log(qy*). Let us define the

constant a as a5PE«/g. The entrainment rate, de-

trainment rate, relative humidity, and condensation rate

c can then be written as

«5 d5
ag

PE
, (3)

RH5
12PE1 a

11 a
, and (4)

c

M
5

gq
y
*

11 a
. (5)

In these equations, a, PE, RH, and M are constant with

height; «, d, g, c, and qy* vary with height.

In the zero-buoyancy bulk-plume equations, the en-

vironment and the entraining convection (i.e., the zero-

buoyancy bulk plume) have identical profiles of

temperature T(z) and saturation specific humidity

qy*(z). As shown in appendix B, these quantities can

be combined into a conserved variable:

h
a
*5 c

p
T1 gz1

Lq
y
*

11 a
, (6)
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where g is the gravitational acceleration, cp is the heat

capacity of air at constant pressure, and L is the latent

heat of condensation, all assumed to be constants. We

will refer to ha* as the entraining moist static energy

(EMSE) of the entraining convection; it is also the

saturated EMSE of the environment. This variable is

conserved in the sense that it is constant with height for a

given a and surface temperature Ts.

Under the assumptions outlined above, the tempera-

ture lapse rate G can be written as

G5
(11 a)g1 (q

y
*Lg/R

a
T)

(11 a)c
p
1 (q

y
*L2/R

y
T2)

, (7)

where Ra and Ry are the specific gas constants of dry air

and water vapor, respectively. Here, and elsewhere, we

approximate the specific gas constant of moist air by Ra.

For zero entrainment (a 5 0), the lapse rate of the en-

vironment is equal to amoist adiabat, RH5 12PE, and

c5 gqy*M. On the other hand, if the entrainment rate is

taken to infinity (a/‘), the lapse rate of the environ-

ment goes to a dry adiabat, RH5 1, and c5 0.

Denoting the surface2 temperature by Ts, we can ap-

proximate the profile of qy* as an explicit function of

temperature:

q
y
*(T)5 (11 a)

R
a
T
0

L
W[y

a
e2f (Ts2T)] , (8)

where

y
a
5

Lq
ys
*

(11 a)R
a
T

0

exp

�
Lq

ys
*

(11 a)R
a
T
0

�
and (9)

f 5
L

R
y
T2

0

2
c
p

R
a
T
0

. (10)

Here,W is the LambertW function, qys* is the saturation

specific humidity at the surface, and the constant refer-

ence temperature T0 is chosen below.

We can also obtain an approximate expression for z(T):

z(T)5 z
s
1

c
p

g
(T

s
2T)1

R
a
T
0

g
W(y

a
)

2
R

a
T

0

g
W[y

a
e2f (Ts2T)] , (11)

where zs is the surface altitude. This equation gives

the height of each isotherm in the troposphere. Note

that Eqs. (8) and (11) guarantee the conservation of

saturated EMSE. Unfortunately, Eq. (11) cannot be

inverted to give an analytical expression for T(z),

but we will see that z(T) is sufficient to calculate

CAPE.

b. Derivation of CAPE

Before we can calculate CAPE, we must first de-

cide where the top of the troposphere is. For this, we

will use the fixed-anvil temperature (FAT) hypoth-

esis of Hartmann and Larson (2002). The FAT hy-

pothesis proposes that the temperature at the top

of the convecting troposphere remains relatively

constant as the surface temperature is changed.

Support for this hypothesis has been found from

studies of surface temperature changes in both cloud-

resolving simulations and global climate models

(Kuang and Hartmann 2007; Zelinka and Hartmann

2010; Harrop and Hartmann 2012; Singh and

O’Gorman 2015). For lack of an alternative, we will

assume that FAT is strictly obeyed over a wide range

of surface temperatures, with the tropopause tem-

perature set to 200K. And, for simplicity, we will

assume that the lower stratosphere is isothermal at

this temperature.

CAPE is given by the integral over height of the

buoyancy of a nonentraining parcel from zs to its level of

neutral buoyancy. In this calculation, we will approxi-

mate the nonentraining parcel’s moist static energy

(MSE) as being conserved during this ascent; this ne-

glects the small correction from the fact that MSE de-

creases with height by an amount equal to the parcel’s

buoyancy (Romps 2015). The temperature profile of the

nonentraining parcel is then given by Eq. (11) with a set

to zero. Finally, we will ignore virtual effects and ap-

proximate the buoyancy as gDT/T0. With these ap-

proximations, CAPE is equal to g/T0 times the area

between the two temperature profiles. This can be

written as

CAPE5
g

T
0

ðTs

TFAT

dT [z
0
(T)2 z

a
(T)] ,

where TFAT 5 200K, za(T) is given by Eq. (11) with

a. 0 (i.e., the height as a function of temperature for the

environment, the thermal structure of which is set by

entraining clouds), and z0(T) is given by Eq. (11) with

a5 0 (i.e., the height as a function of temperature for a

nonentraining cloud). The right-hand side can be in-

tegrated analytically, yielding

2As inR14, wewill refer to cloud base as the surface; for a typical

cloud-base height of 500m in RCE, the distinction between cloud

base and the surface makes a difference of only 5 K, which is small

compared to the range of temperatures we will be exploring. If

desired, a boundary layer can be added back to the solutions found

in this paper by adding to the ‘‘surface’’ temperatures a tempera-

ture increment equal to g/cp times the cloud-base height.
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CAPE5
R

a

2f

�
W(y

a
) 22 2f (T

s
2T

FAT
)1W(y

a
) 2W(e2f (Ts2TFAT)y

a
) 21W(e2f (Ts2TFAT)y

a
)

����

2W(y
0
) 22 2f (T

s
2T

FAT
)1W(y

0
) 1W(e2f (Ts2TFAT)y

0
) 21W(e2f (Ts2TFAT)y

0
)

�
,

����
(12)

where y0 is given by Eq. (9) with a5 0. To make T0 as

representative as possible of the mean temperature ex-

perienced between the surface and the tropopause, we

use T0 5 (Ts 1TFAT)/2 here and in all of the preceding

equations. Although Eq. (12) is a complicated-looking

expression, we will see in section 3d that it simplifies

dramatically for a wide range of surface temperatures

that includes the current tropics.

3. Results

The goals of this section are twofold: to validate the

accuracy of these analytical solutions and to explore

their implications. In the derivation of Eqs. (8), (11), and

(12) for qy*(T), z(T), and CAPE, several simplifying

approximations are used. The specific gas constant for

moist air is approximated as Ra, T is replaced with an

effective temperature T0 in several places, L is approx-

imated as a constant, and cp is approximated by the

constant value for dry air. In the figures to follow, results

labeled ‘‘analytical’’ have been derived using these ap-

proximations. Results labeled ‘‘numerical’’ have been

calculated numerically by integrating the governing

equation for MSE—Eq. (B13) in appendix B—with

« varying with height to maintain a constant a for en-

training updrafts and with «5 0 for nonentraining up-

drafts. In the numerical calculations, the heat capacity, gas

constant, latent enthalpy, and saturation specific humidity

are treated with the full thermodynamics for dry air, va-

por, and liquid (Romps 2008, 2015), and saturation is

maintained at each height through use of a root solver.

a. Magnitude of CAPE

Equation (12) gives the analytical expression for

CAPE as a function of two variables: Ts and a. Note that

CAPE does not have any dependence on PE other than

through its dependence on a. This invariance can be

confirmed by varying PE in numerical integrations of

Eq. (B13) while keeping a fixed. The left panel of Fig. 1

shows this numerically calculated CAPE for surface

temperatures Ts ranging from 250 to 350K and for

a ranging logarithmically from 0.01 to 1. Note that

CAPE increases with a. Recalling that a5PE«/g, this is

to be expected: an increase in the entrainment rate should

steepen the environmental lapse rate and, therefore, in-

crease CAPE. Note that CAPE increases with warming

over most of this temperature range but not at high tem-

peratures. This behavior will be discussed in section 3f.

We are now in a position to determine a and PE. For

the deeply convecting tropics, the ocean temperature is

about 300K, and a typical value of CAPE is about 2000–

3000 J kg21 (Williams and Renno 1993). From the nu-

merical results shown in the left panel of Fig. 1, we see

that this corresponds to a5 0. 2. This value of a will be

used henceforth. We can estimate PE by referring to

studies that have reported the precipitation efficiency

from cloud-resolving simulations of deep convection.

From a sampling of such studies, the reported effi-

ciencies are 30%–50% (Weisman and Klemp 1982),

36%–42% (Lipps and Hemler 1986), 20%–50%

(Ferrier et al. 1996), 27% (Pauluis and Held 2002b),

32%–45% Tao et al. (2004), 21% (Romps 2011), and

FIG. 1. Plots of CAPE as a function of surface temperature Ts and a5PE«/g as calculated from (left) numerical integration of Eq. (B13),

(center) the full analytical Eq. (12), and (right) the approximate analytical Eq. (17).
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33%–39% (Langhans et al. 2015). These results in-

dicate that PE lies in the range of 20%–50%. We will

split this difference and assign PE a value of 0.35.

What relative humidity and entrainment rate do

a5 0:2 and PE5 0:35 imply? By Eq. (4), these values

imply a relative humidity of about 70%. For the en-

trainment rate, the answer to this question depends on

the value of g, since «5 ag/PE. For a surface tempera-

ture of 300K, the water vapor scale height 1/g is about

8 km at the surface and roughly halves for every 5 km of

elevation (i.e., 1/g5 4 km at z5 5 km, 1/g5 2 km at

z5 10 km, and 1/g5 1 km at z5 15 km). For a constant

a, this height dependence of g implies that « must increase

with height. In section 4, we will compare constant-«

solutions to the constant-a solutions studied in this section.

For now, however, we simply note that our choices of

a and PE give reasonable values of «. In the midtropo-

sphere, where 1/g’ 3 km, our chosen values of a and PE

imply that «’ 0:2 km21. This is consistent with, but at

the low end of, the range of bulk-plume entrainment

rates calculated for passive tracers in large-eddy simu-

lations of deep convection (Romps 2010, 2014b).

The center panel of Fig. 1 shows CAPE as calculated

from the analytical expression in Eq. (12). Despite using

many simplifying approximations, the analytical CAPE

is in excellent agreement with the numerical CAPE. The

right panel, which obviously differs from the left and

center panels, will be discussed in section 3d.

b. CC scaling of tropopause height

We can calculate temperature profiles either numer-

ically by integrating Eq. (B13) or analytically with

Eq. (11). The solid lines in the left panel of Fig. 2 show

the environmental temperature profiles and the non-

entraining parcel temperatures for five different surface

temperatures: 250, 275, 300, 325, and 350K. For each

surface temperature, the gray area between the two

curves is proportional to CAPE. Recall that, in accor-

dance with the FAT hypothesis, we use a fixed tropo-

pause temperature of 200K, and the environmental

temperature is assumed to be isothermal above the

tropopause. For reference, the dashed lines indicate the

dry adiabats.

The right panel of Fig. 2 plots the same information,

but as calculated using the analytical expression in Eq.

(11). Note the excellent agreement between the two

panels. Only for a surface temperature of 350K does the

analytical solution begin to exhibit noticeable de-

partures from the numerical solution.

It is interesting to note that the tropopause height

appears to grow exponentially with surface temperature

in Fig. 2. To understand why this occurs, we can appeal

to EMSE, which was defined in Eq. (6). Using conser-

vation of EMSE and the smallness of qy* in the upper

troposphere relative to qys* , we can approximate the

tropopause height zFAT as

z
FAT

’ z
s
1

c
p

g
(T

s
2T

FAT
)1

Lq
ys
*

g(11 a)
. (13)

For Ts 5 300K, TFAT 5 200K, and zs 5 0m, this gives

zFAT ’ 15 km, with 10km coming from the difference in

dry enthalpy between the surface and the tropopause

(middle term on the right-hand side) and 5km coming

FIG. 2. (left) For surface temperatures of Ts 5 250, 275, 300, 325, and 350K, profiles of environmental and

nonentraining-parcel temperature profiles calculated by numerical integration of Eq. (B13) (solid) and dry adiabats

(dashed). (right) As in (left), but calculated using the analytical expression in Eq. (11). Note that CAPE is pro-

portional to the shaded area between the two temperature profiles.
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from the difference in moist enthalpy between the sur-

face and the tropopause (last term on the right-hand

side). Since zs, cp, TFAT, L, g, and a are constants, zFAT

grows with warming by virtue of two terms: the piece

linear in Ts and the piece that is linear in qys* . For suffi-

ciently large Ts, the qys* piece dominates, giving rise to

Clausius–Clapeyron scaling of tropopause-height in-

creases. Using the Clausius–Clapeyron relation for qys* , we

can calculate the change in tropopause height per degree

of surface temperature:

d

dT
s

z
FAT

’
c
p

g
1

L2q
ys
*

gR
y
T2
s (11 a)

. (14)

For the surface temperature of the current tropics (Ts ’
300 K), this predicts dzFAT/dTs 5 400mK21, with

100mK21 coming from increases in the sensible-

enthalpy difference and 300mK21 coming from in-

creases in the latent-enthalpy difference. For very warm

surface temperatures (320,Ts , 340K), the tropo-

pause height becomes extraordinarily sensitive to surface

temperature with dzFAT/dTs in the range of 1–2kmK21.

Because of the smallness of a (a’ 0:2), these predictions

are very similar to the predictions obtained using MSE

(i.e., EMSE with a5 0).

For the Ts 5 350K case, note in Fig. 2 that the lapse

rate does not asymptote to the dry adiabatic lapse rate in

the upper troposphere. This is caused by the substantial

upper-tropospheric specific humidity (qy*’ 0:05 at the

tropopause), which is related to the super-CC scaling

of tropopause specific humidity discussed below. The

noticeable decrease in lapse rate with height in the

numerical solution of Ts 5 350K stems from the ex-

plicit instances of T in the lapse-rate equation:

G5
(11 a)g1 (q

y
*Lg/R

a
T)

(11 a)c
p
1 (q

y
*L2/R

y
T2)

.

The analytical theory sets those explicit instances of T

to a constant T0, so the analytical theory does not cap-

ture this effect.

c. Super-CC scaling of stratospheric humidity

Wewill now take a look at qy*profiles and explore how

they change with surface temperature. The left panel of

Fig. 3 shows profiles of qy* for five different surface

temperatures of Ts 5 250, 275, 300, 325, and 350K and

three different values of a: a5 0 (the nonentraining

parcel), a5 1, and a 5 ‘ (corresponding to the dry

adiabat). Noting that the abscissa is a log axis, we see

that the surface saturation humidity qys* obeys Clausius–

Clapeyron scaling, increasing roughly exponentially

with surface warming. The value of qy* in the tropopause,

however, appears to increase even more rapidly than qys*

at warm surface temperatures, which would indicate

super-CC scaling. Another curiosity is the apparently

linear relationship between the height of the tropopause

and the logarithm of qy* at the tropopause.

We can understand all of these features by examining

the analytical solutions given by Eq. (8), which are

plotted in the right panel of Fig. 3. In the upper tropo-

sphere, qy* is typically small enough that Lqy*� RaT0.

FIG. 3. (left) Profiles of saturation specific humidity qy*for five different surface temperatures of Ts5 250, 275, 300,

325, and 350K and three different values of a (0, 1, and‘) calculated by numerical integration of Eq. (B13). (right)As

in (left), but calculated using the analytical expression in Eq. (8). The dashed line showsEq. (13) usingT0 5 250K and

Ts0 5 300K.

SEPTEMBER 2016 ROMPS 3725



For example, in the current tropics, Lqy* at the tropo-

pause is several orders of magnitude smaller than RaT0.

In Eq. (8), this implies that the W function has a value

much less than one, so it may be approximated by its

argument. Therefore, in the upper troposphere, we may

approximate qy* as

q
y
*(T)5

R
a

R
y

p
y
*(T)

p
s

exp

�
c
p

R
a
T
0

(T
s
2T)1

Lq
ys
*

(11 a)R
a
T
0

�

(upper troposphere),

(15)

where ps is the surface pressure. For T5TFAT, the term

in front of the exponential is constant, and qy*(TFAT)

scales as the exponential of the sum of two terms: a term

linear in Ts and a term linear in qys*. We can also arrive at

Eq. (15) by using qy*5Rapy*/Ryp along with the expres-

sion for p(T) given in appendix B. Since py*(TFAT) is in-

variant with surface warming, the growth of qy*(TFAT)

with Ts is entirely due to the decrease in tropopause

pressure as the troposphere deepens with warming.

Since the Brewer–Dobson circulation pegs the hu-

midity of the tropical lower stratosphere to the satura-

tion specific humidity at the tropopause (Brewer 1949),

this expression tells us how stratospheric humidity de-

pends on surface temperature. Using Eq. (15) to calcu-

late the fractional change in qy*(TFAT) per degree of

surface warming, we find

d

dT
s

log[q
y
*(T

FAT
)]5

c
p

R
a
T

0

1
L

R
y
T2
s

Lq
ys
*

(11 a)R
a
T

0

.

The first term (cp/RaT0) is only about 1%K21. The sec-

ond term is the CC-scaling rate (L/RyT
2
s ) times the ratio

Lqys* /[(11 a)RaT0]. Therefore, we have sub-CC scaling

of stratospheric humidity when Lqys* /[(11 a)RaT0]& 1

and super-CC scaling of stratospheric humidity when

Lqys* /[(11 a)RaT0]* 1. For a5 0:2, the transition from

sub-CC scaling to super-CC scaling occurs around

Ts ’ 304K.Above this temperature, surfacewarming causes

stratospheric specific humidity to grow faster (in a frac-

tional sense) than near-surface specific humidity.

The top rowofFig. 4 plots the tropopauseqy*as a function

of surface temperature for three values of a using, from left

to right: numerical integration, Eq. (8) evaluated at

T5TFAT, and Eq. (15) evaluated at T5TFAT. Equation

(15) deviates from the numerical and full analytical solu-

tions only at very warm surface temperatures, where qy* at

the tropopause is not small enough to satisfy Lqy*� RaT0.

The bottom row of Fig. 4 plots the fractional increase in

tropopause qy* per kelvin of surface warming. Note that the

a5 0:2 curve would be very close to the thick, purple, a5 0

curve on this plot (and, therefore, is not plotted to avoid

clutter). For Ts 5 300K, these results predict that tropical

lower-stratospheric humidity increases at a rate of about

6%per kelvin of surface warming. This rate of increase is

smaller for colder temperatures (e.g., about 3%K21 for

Ts 5 275K) and larger for warmer temperatures (e.g.,

about 15%K21 for Ts 5 325K, and reaching as high as

30%K21). Also shown in the left panels of Fig. 4 are the

qy*(200K) and their rates of exponential increase from

the two sets of large-eddy simulations presented by R14.

For consistency with the neglect of ice in the derivations

here, values of qy*(200K) are calculated with respect to

liquid; the ratio of liquid and ice partial pressures at

200K is approximately 2, and this ratio is independent of

surface temperature. Those simulations were run to RCE

over fixed sea surface temperatures of 290, 300, 310, and

320K, and their qy*(200K) values exhibit the behavior

predicted here: namely, the transition from sub-CC scal-

ing to super-CC scaling.

Finally, we can explain the apparently linear rela-

tionship between zFAT and the logarithm of tropopause

qy*. Evaluating Eq. (15) at T5TFAT and then using Eq.

(13) to eliminate qys* in the exponential, we get

q
y
*(T

FAT
)5

R
a

R
y

p
y
*(T

FAT
)

p
s

exp

�
g

R
a
T
0

(z
FAT

2 z
s
)

�
. (16)

Since py*(TFAT) and ps are independent of Ts, we see that

qy*(TFAT) goes as the exponential of zFAT. Equivalently,

there is a linear relationship between the height of the

tropopause and the logarithm of the tropopause qy*. The

dashed line in Fig. 3 plots Eq. (16) using T0 5 250K.

d. CC scaling of CAPE

The original question posed in section 1 is whether or

not CAPE exhibits CC scaling. Indeed, inspection of

Eq. (12) reveals that there is a wide range of temper-

atures for which CAPE scales as qys* . For Lqys* � RaT0

and Ts 2 TFAT * 2/f ’ 20–30K, we know that

W[e2f (Ts2TFAT)ya] � W(ya) � 1, so we can safely ap-

proximate Eq. (12) as

CAPE5
R

a

2f

�
W(y

a
)[22 2f (T

s
2T

FAT
)]

2W(y
0
)[22 2f (T

s
2T

FAT
)]

�
.

Since the Lambert W function is defined byW(xex)5 x,

and since ya is given by Eq. (9), this simplifies to

CAPE5
a

11 a

Lq
ys
*

T
0

(T
s
2T

FAT
2T

c
) , (17)

where
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c
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R
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T
0

(R
a
L/R

y
T
0
)2 c

p

5O(10)K. (18)

In this expression for CAPE, there is a relatively weak

linear dependence on an explicit Ts. Most of the varia-

tion in CAPE comes from the fact that it is proportional

to the surface saturation humidity qys*.

Figure 5 plots Eq. (17) as the dotted red line, along

with the numerical solution and the full analytical so-

lution fromEq. (12). The two panels of Fig. 5 display the

same information, but the ordinate is linear in the left

panel and logarithmic in the right panel. Clearly, the three

curves are in excellent agreement up to a surface tem-

perature (really, cloud-base temperature) of about 310K.

In other words, CAPE exhibits CC scaling over tempera-

tures ranging from less than 250K all the way up to 310K.

This behavior is also evident in Fig. 1, which plots Eq. (17)

in the right panel for comparison with the other two.

What sets the temperature at which CAPE deviates

from CC scaling? In the derivation of Eq. (17), we used

the assumption that Lqys* � RaT0. Deviations from CC

scaling are to be expected, therefore, around the Ts

where Lqys* ’RaT0. This equality occurs at about Ts 5
310K, at which qys* is equal to 0.04. Figure 6 illustrates

the departure from CC scaling at this temperature.

Plotted in Fig. 6 is the fractional increase in CAPE per

degree of surface warming calculated using the ap-

proximate CC scaling from Eq. (17) in red and the full

analytical solution from Eq. (12) in blue (for 0, a,‘).
For the current tropics, both the full analytical solution

and the approximate CC-scaling solution agree that

CAPE should increase by about 6%–7%K21. The thin

vertical line marks the temperature at which Lqys* 5
RaT0; this separates the CC-scaling regime on the left

from the non-CC-scaling regime on the right.

It is worth noting that Eq. (17) can be recast in terms

of RH and PE. Since RH5 (12PE1 a)/(11 a), we can

write a as a5PE/(12RH)2 1. Therefore, Eq. (17) can

be written as

CAPE5

�
12

12RH

PE

�
Lq

ys
*

T
0

(T
s
2T

FAT
2T

c
) . (19)

FIG. 4. (top) The tropopause qy* as a function of surface temperature Ts for three different values of a (0, 1, and ‘), as calculated (left)

numerically, (center) analytically from Eq. (8) using T5TFAT, and (right) analytically using Eq. (15) with T5TFAT. The black circles

show the mean qy* (with respect to liquid) at T 5 200K in the large-eddy simulations of R14. (bottom) As in (top), but for the fractional

increase in tropopause qy* per kelvin of surface warming.

SEPTEMBER 2016 ROMPS 3727



For PE less than 12RH, this equation appears to pre-

dict negative CAPE, which would be nonsense. As

shown by R14, however, PE is always greater than or

equal to 12RH, so CAPE is always nonnegative. The

veracity of PE$ 12RH can also be seen from the

equations presented in this paper: since a[PE«/g is

manifestly nonnegative, and since a5PE/(12RH)2 1,

the inequality must hold.

To get a sense for the parcel buoyancies that are re-

sponsible for generating these CAPE values, Fig. 7 plots

the buoyancies of nonentraining parcels lifted through

an atmosphere with a5 0:2. The left panel shows the

numerical results, and the right panel shows the results

obtained using analytical Eq. (11) for the environment

(a 5 0.2) and the nonentraining parcel (a 5 0). It is

noteworthy that, for a given surface temperature, the

largest buoyancies are in the upper troposphere. This

occurs despite the absence of ice processes here; this is

consistent with the explanation of this behavior given by

Seeley andRomps (2015b). It is also noteworthy that the

largest overall buoyancies occur for a surface tempera-

ture of about 325K instead of at the largest surface

temperature of 350K.

e. Why does CAPE exhibit CC scaling?

The best way to gain an intuition for Eq. (17) is to

rederive it using the conservation of saturated EMSE.

The troposphere has a constant saturated EMSE ha, the

value of which can be written either in terms of T, z(T),

and qy*(T) (left-hand side) or in terms of Ts, zs, and qys*

(right-hand side):

c
p
T1 gz(T)1

Lq
y
*(T)

11 a
5 c

p
T
s
1 gz

s
1

Lq
ys
*

11 a
. (20)

An undiluted parcel lifted from the surface will have a

constant EMSE h0, the value of which can be written

either in terms ofT 0, z(T 0), and qy*(T
0) (left-hand side) or

in terms of Ts, zs, and qys* (right-hand side):

FIG. 5. (left) CAPE as a function of surface temperature Ts for a5 0:2, as calculated using numerical in-

tegration (black solid), the analytical expression for CAPE given by Eq. (12) (blue dashed), and the approx-

imate analytical expression for CAPE in Eq. (17) (red dotted), which exhibits CC scaling. (right) As in (left),

but with a log axis.

FIG. 6. The fractional increase in CAPE per degree of surface

warming calculated using the approximate Eq. (17) (red), which

exhibits CC scaling, and Eq. (12) plotted for the full range of

possible a (blue). The thin vertical line marks the temperature at

which Lqys* 5RaT0.
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At the same height z, the temperature T 0 of the undiluted
parcel will exceed the temperature T of the environment;

let us denote this difference by DT[T 0 2T. Subtracting

Eq. (20) from Eq. (21) at the same height z, we get

c
p
DT1Lq

y
*(T1DT)2

Lq
y
*(T)

11 a
5

a

11 a
Lq

ys
* .

This equation says that, at a height z, the difference in

EMSE between the undiluted parcel and the environ-

ment (left-hand side) is equal to a constant (right-hand

side). Taylor expanding qy*(T1DT) to first order around

T and using the Clausius–Clapeyron equation, this can be

solved for DT and then written in terms of buoyancy

b5 gDT/T :

b5
a

11 a

gL

T

q
ys
*2 q

y
*

c
p
1 (L2q

y
*/R

y
T2)

.

Note that this expression for b depends on qy* in both the

numerator and denominator.

Let us now consider atmospheres that satisfy

qys*L � RaTs; on Earth, this condition is satisfied for

surface temperatures below about 310K. If this condi-

tion is met, then we know that qy*L � RaT throughout

the troposphere, because qy*decreases more rapidly with

height than T. In this regime, the lapse rate for an un-

diluted parcel is given by Eq. (7), with a5 0 and the

numerator equal to g:

G5
g

c
p
1 (L2q

y
*/R

y
T2)

.

To calculate CAPE, we are interested in bdz, which is

the specific work done by buoyancy in the height in-

terval dz. Up to a sign, this can be written as (b/G)dT,
which is the specific work done by buoyancy in the

temperature interval dT. When we divide b by G, note
that their denominators cancel, leading to

b

G
5

a

11 a

L

T
(q

ys
* 2 q

y
*). (22)

This simple expression tells us the specific work per

temperature interval.

Equation (B20) in appendix B gives the differential

equation that relates the profile of qy* to the profile of T.

For qy*L � RaT , that equation tells us that the qy* profile

has an exponential dependence on temperature with

an e folding for every temperature increment Tc, which

is the constant given by Eq. (18). In other words,

qy*5 qys* exp[(T2Ts)/Tc] throughout the troposphere.

Therefore, the profiles of buoyancy b and the specific

work per temperature interval b/G simplify to

b5
a

11 a

gLq
ys
*

T

12 e(T2Ts)/Tc

c
p
1 (L2q

ys
* /R

y
T2)e(T2Ts)/Tc

and (23)

b

G
5

a

11 a

Lq
ys
*

T
[12 e(T2Ts)/Tc ] . (24)

Approximating the T in the denominator by T0 and then

integrating Eq. (24) over temperature from TFAT to Ts

while noting that Ts 2TFAT � Tc, we get an expression

for CAPE:

CAPE5
a

11 a

Lq
ys
*

T
0

(T
s
2T

FAT
2T

c
) .

FIG. 7. Thebuoyancyprofiles for nonentrainingparcels lifted through atmosphereswith a5 0:2 and surface temperatures

of Ts 5 250, 275, 300, 325, and 350K and calculated using (left) numerical integration and (right) Eq. (11).
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This is exactly the same as Eq. (17). Note that we used

the condition qys*L � RaTs twice in this derivation: to

simplify G and to write qy* as an exponential function of

T. Therefore, this expression for CAPE should fail when

qys*L � RaTs ceases to be true, which occurs for surface

temperatures greater than about 310K.

From this derivation, we see that the CC scaling of

CAPE is driven by the CC scaling of work per temper-

ature interval, b/G. From Eq. (24), b/G is proportional to

qys* (CC scaling) times a function of temperature that

transitions from zero at the surface to approximately

one at and above the Ts 2Tc isotherm. Therefore,

CAPE scales as qys* times the temperature range

Ts 2Tc 2TFAT. The fact that the temperature range

increases with Ts adds an additional;1%K21 growth

in CAPE with surface warming.

The right panel of Fig. 8 illustrates the simple buoy-

ancy profiles described by Eq. (23). The areas under

these buoyancy curves are equal to the values given by

Eq. (17) and plotted as the dotted red curve in Fig. 5.

The added value of Fig. 8 is that it allows us to see how

the failure of CAPE CC scaling (for Ts * 310K) is ex-

pressed in the corresponding buoyancy profiles. As ex-

pected, Eq. (23) produces accurate buoyancy profiles for

surface temperatures of 250, 275, and 300K. For surface

temperatures of 325 and 350K, Eq. (23) dramatically

errs in predicting the buoyancy, which is the expected

behavior because surface temperatures of 325 and

350K are above the ;310-K cutoff for the CC scaling

of CAPE.

f. Why does CAPE peak around Ts ’ 335K?

In Fig. 5, we see that CAPE peaks at Ts ’ 335K. To

understand why, we must first note that the temperature

anomaly DT (relative to the environment at the same

height) of an undiluted parcel lifted from the surface is

related to its saturated MSE anomaly Dh* by an ap-

proximate linear relation:

Dh*’bDT , (25)

where

b5 c
p
1L

›q
y
*

›T
5 c

p
1

q
y
*L2

R
y
T2

. (26)

If qy*L
2/RyT

2 . cp, then the saturated MSE difference

between an undiluted parcel and its environment is ex-

pressed mostly as a latent enthalpy anomaly (i.e., as a qy*

anomaly). If qy*L
2/RyT

2 , cp, then the saturated MSE

difference between an undiluted parcel and its envi-

ronment is expressed mostly as a sensible-enthalpy

anomaly (i.e., as a T anomaly). The altitude where

qy*L
2/RyT

2 5 cp (i.e., where b5 2cp) serves as a natural

divider between these two regimes.

Seeley and Romps (2016) explained how convective

entrainment and Eq. (25) give rise to the ‘‘shape of

CAPE.’’ In the lower troposphere, the buoyancy of an

undiluted parcel grows with height because the satu-

rated MSE difference Dh* between the undiluted parcel

and its environment grows with height. Although Dh*
grows with height, it tends to plateau above one water

vapor scale height since the MSE-reducing effect of

entrainment is proportional to the subsaturation of the

environment, (12RH)qy*.

On the other hand, the buoyancy profile of an un-

diluted parcel (i.e., the shape of CAPE) is much more

top-heavy, and this is caused by the dependence of b on

FIG. 8. As in Fig. 7, but using (left) Eq. (11) and (right) Eq. (23).
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qy*. In the lower troposphere, where b. 2cp, Dh* is ex-

pressed primarily as a latent enthalpy difference, so DT
is suppressed. In the upper troposphere, where b, 2cp,

Dh* is expressed primarily as a sensible-enthalpy dif-

ference, so DT is enhanced. This leads to the prominent

and familiar reservoir of large buoyancy in the upper

troposphere. A common misconception is that the

latent heat of fusion is responsible for this large upper-

tropospheric buoyancy. This misconception has been

fueled by the coincidence that, in Earth’s current

tropics, the 273-K isotherm is close to the altitude where

b5 2cp (Seeley and Romps 2016).

We are now in a position to understand why CAPE

hits its maximum value around Ts ’ 335K. In short, this

is the surface temperature at which the b5 2cp surface

reaches the tropopause. Once this happens, b exceeds

2cp throughout the troposphere, so the saturated MSE

anomaly of an undiluted parcel is never expressed pri-

marily as a sensible-enthalpy anomaly. In other words,

Dh* is never fully expressed as buoyancy.

This is illustrated by Fig. 9. In the left panel, the solid

curve plots Dh* at the tropopause calculated from the

analytical Eqs. (8)–(11) using a5 0:2 for the environ-

ment and a5 0 for the undiluted parcel, with a root

solver used to find the undiluted-parcel temperature at

the tropopause. Note that Dh* grows roughly exponen-

tially with surface temperature, which we can un-

derstand by the fact, shown in appendix C, that

Dh*(z
FAT

)’
a

11 a
Lq

ys
* . (27)

This approximation for Dh* is plotted as the dashed

curve in the left panel of Fig. 9. Equation (27) tells us

that Dh* at the tropopause exhibits approximate

Clausius–Clapeyron scaling with respect to Ts.

The center panel of Fig. 9 plots b at the tropopause

using analytical Eq. (8). At the tropopause, b reaches

2cp at Ts ’ 335K. The temperature anomaly of an un-

diluted parcel DT is given approximately by Dh*/b,
which is plotted as the solid curve in the right panel of

Fig. 9. Even thoughDh* grows exponentially throughout
this wide range of Ts, the rapid increase of b at

Ts ’ 335K causesDT to peak there. This is corroborated

by the actual tropopause DT plotted as the dashed curve

in the right panel of Fig. 9, which is found using a root

solver as mentioned above.

We can derive Ts ’ 335K as follows. By the definition

of b, the b5 2cp surface hits the tropopause when

q
y
*(T

FAT
)L2

R
y
T2
FAT

5 c
p
.

If we combine this with Eq. (15), which gives an ex-

pression for qy* at the tropopause, then we find that the

b5 2cp surface hits the tropopause when the near-

surface specific enthalpy (cpTs 1Lqys* ) reaches cpTFAT 1
RaT0 log[R

2
ycpT

2
FATps/RaL

2py*(TFAT)]’ 0:7MJkg21. This

occurs at a Ts of about 335K.

4. Constant «

Up to this point, we have exclusively studied solutions

with constant a.We have focused on the constant-a cases

because they correspond to constant RH (which is at-

tractive for its theoretical simplicity) and because they

are analytically soluble. The downside to using constant

a is that it implies a z-dependent and Ts-dependent «.

How might we expect CAPE to change if we used

constant « instead of constant a? To get a hint, consider a

hybrid of these two conditions: make « at the surface

independent of Ts (which makes a at the surface vary

as a function of Ts), but hold a fixed at its surface value

throughout the troposphere (so that « varies in the

vertical). Since a5PE«/g, and since the scale height 1/g

FIG. 9. (left) The saturated MSE anomaly Dh* of an undiluted parcel lifted to the tropopause as a function of Ts, calculated from the

analytical Eqs. (8)–(11) (solid) and the approximation for Dh* given by Eq. (27) (dashed). (center) The value of b, defined by Eq. (26), at

the tropopause as a function of Ts. (right) The ratio Dh*/b, which approximates the temperature anomaly DT of the undiluted parcel

(solid), and the actual temperature anomaly DT, calculated from the analytical Eq. (11) (dashed).
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increases at the surface with surface warming, the value

of amust increase with surface warming in this scenario.

By Eq. (17), an increase in a with warming would cause

CAPE to increase faster than it does with constant a.

This suggests that CAPE increases somewhat faster with

warming when we use constant « than it does when we

use constant a.

This may explain why some of the cloud-resolving

simulations discussed in section 1 found increases in

CAPE that exceed the CC-scaling prediction. As dis-

cussed in section 3d, the analytical solutions for CAPE

using constant a predict an increase of CAPE in the

current tropics by about 6%–7%K21. Meanwhile,

studies of cloud-resolving simulations report increases

of 7% (Seeley and Romps 2015b), 8% (Romps 2011;

Muller et al. 2011), and 12%K21 (SO13).

Although we do not have analytical constant-«

solutions for CAPE, we can calculate CAPE for con-

stant « numerically. Figure 10 replots the right panel of

Fig. 5 and adds to it two of these numerical solutions

(one for « 5 0.2 km21 and one for « 5 0.05 km21). We

see that, indeed, CAPE with constant « increases

somewhat faster than CAPE with constant a. More im-

portantly, using « 5 0.2 km21, which is the entrainment

rate we had estimated in section 3a as the closest analog

to a5 0:2, gives CAPE values that are very similar to the

a5 0:2 solutions, especially below a surface temperature

of 310K. By an apparent coincidence, the increase in

a with warming in the « 5 0.2-km21 solution causes

CAPE to track the CC-scaling approximation better

than the constant-a solutions at high temperatures.

Overlaid on Fig. 10 are the CAPE values reported

from the studies of RCE in cloud-resolving simulations.

The two pairs of values plotted for Muller et al. (2011)

correspond to the two different methods they used to

calculate CAPE, assuming pseudoadiabatic ascent for

one and adiabatic ascent for the other. The CAPE

values from Romps (2011), Muller et al. (2011), and

Seeley and Romps (2015b) agree fairly well with both

the approximateCC-scaling CAPE given in Eq. (17) and

with the « 5 0.2-km21 numerical solutions. This agree-

ment is even more impressive considering that these

cloud-resolving model results were obtained from two

different models and three different sets of grid spacings

and domain sizes. The simulations of SO13, which used

yet another cloud-resolving model, appear to more

closely track the solution obtained with « 5 0.05 km21.

5. Summary

In an effort to understand the workings of convective

available potential energy (CAPE), we have derived

here the first analytical solutions to radiative–convective

equilibrium (RCE). These solutions are given by Eqs.

(4), (8), and (11), which specify RH, qy*(T), and z(T),

respectively. With these, we have derived Eq. (12),

which gives an analytical expression for CAPE.We have

also confirmed that these analytical solutions closely

match the numerical solutions (see Figs. 1–5 and 7).

These solutions lead to several insights about RCE

that stand apart from our main focus on CAPE. As

shown in section 3b, changes to the tropopause height

exhibit Clausius–Clapeyron (CC) scaling at warm

temperatures, increasing in proportion to the surface

saturation specific humidity qys*. At current tropical

temperatures, Eq. (14) predicts that the tropopause

rises by 400m for every 1K of surface warming, but

this increases in proportion to qys* up to rates of 1–

2 kmK21 at higher temperatures. In section 3c, we

learned that stratospheric humidity exhibits super-CC

scaling at warm temperatures. At current tropical

temperatures, Eq. (15) evaluated at the tropopause

temperature predicts a fractional increase in the hu-

midity of the tropical lower stratosphere of about 6%

per kelvin of surface warming, but this increases to as

high as 30%K21 at higher temperatures.

Returning to the analytical expression for CAPE, we

have found that CAPE is well approximated by Eq. (17),

which exhibits CC scaling as a result of the overall factor

of qys*. This CC scaling of CAPE holds for temperatures

up to about 310K, which corresponds to the temperature

FIG. 10. As in Fig. 5 (right), but with numerical solutions added

for «5 0.2 (dotted–dashed) and 0.05 km21 (long dashed) and with

data overlaid from the cloud-resolving simulations of Romps (2011)

(circles),Muller et al. (2011) (triangles), SO13 (diamonds), and Seeley

and Romps (2015b) (squares).
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at which Lqys* ’RaTs. At higher surface temperatures,

CAPE falls off of its Clausius–Clapeyron trajectory

and even decreases at very warm temperatures (see

Fig. 5). As illustrated in Fig. 10, this theory for CAPE

agrees well with most of the recent results from cloud-

resolving simulations.
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APPENDIX A

Derivation of Eq. (2)

We derive here the (incorrect) expression for CAPE

postulated in Eq. (2). Let Qr (Wm23) be the profile of

radiative heating (i.e., Qr , 0), and let Ql (Wm23) be

the profile of latent heating (i.e., Ql . 0). Let us de-

fine Hl and Hr as the mean heights of these cooling

profiles:

H
r,l
5

ð‘
0

dz zQ
r,lð‘

0

dzQ
r,l

.

The profile of cloud temperature anomaly DT (i.e., the

difference in temperature between the cloud and the

environment) is given by the conservation of energy at

each height:

Q
r
1Q

l
2 ›

z
(Mc

p
DT)5 0.

Integrating this equation upward in height starting from

z, we get

Mc
p
DT(z)52

ð‘
z

dz0 [Q
r
(z0)1Q

l
(z0)] .

To connect this to CAPE, we must assume that clouds

are nonentraining so that their buoyancies (gDT/T) are
the same as that of an undiluted parcel. If they are

nonentraining, then themass fluxM is constant up to the

tropopause height zt, above which M, Ql, and Qr are all

zero. Approximating buoyancy as gDT/T0, where T0 is a

representative tropospheric temperature, we can then

write CAPE as

CAPE5

ðzt
0

dz b(z)

5

ðzt
0

dz
gDT(z)

T
0

5
g

Mc
p
T
0

ðzt
0

dzMc
p
DT(z)

52
g

Mc
p
T
0

ðzt
0

dz

ð‘
z

dz0 [Q
r
(z0)1Q

l
(z0)] .

Using integration by parts, the double integral can be

written as (Hl 2Hr)Q, where Q5
Ð ‘
0 dzQl 52

Ð ‘
0 dzQr

is the total radiative cooling (Wm22) of the tropo-

sphere. Therefore, we get MCAPE5h0Q with h0 5
g(Hr 2Hl)/cpT0, which is the result given in Eq. (2).

Note, however, that this expression for CAPE is in-

correct for the reasons discussed in section 1.

APPENDIX B

Derivation of Equations in Section 2

We derive here the equations presented in section 2.

Section a of appendix B begins by deriving the tem-

perature lapse rate G[2›zT. With the expression for G,
section b of appendix B derives the function qy*(T),

which specifies how saturation specific humidity qy* and

temperature T covary in height. This expression is then

used in appendix B, section c, to derive z(T). Appendix

B, section d, derives the profiles of saturation vapor

pressure and total pressure. The analytical equations are

then summarized in appendix B, section e.

a. Derivation of G

The first half of this derivation follows R14. To begin,

we note that the saturation specific humidity qy* is related

to the saturation vapor pressure py* by

q
y
*5

R
a
p
y
*

R
y
p
, (B1)

where Ra is the specific gas constant of dry air, Ry is the

specific gas constant of water vapor, and p is the total air

pressure. Here and elsewhere, we assume that the spe-

cific gas constant of moist air is well approximated byRa.

Next, we note that the Clausius–Clapeyron relation and

the equation of hydrostatic balance can be written as

›
z
log(p

y
*)52

LG

R
y
T2

and (B2)

›
z
log(p)52

g

R
a
T
, (B3)
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where G[2›zT is the temperature lapse rate and L is

the latent heat of evaporation. For simplicity, and be-

cause it will not have a significant effect on the results,

we approximate L as a constant (i.e., independent of

temperature). Later, we will set L equal to the latent

heat of evaporation at an appropriately chosen refer-

ence temperature T0. Also, the ice phase and the asso-

ciated latent heat of fusion are ignored here. Since the

latent heat of fusion is only about 10% as large as the

latent heat of evaporation, its omission does not have a

significant effect on the results.

By taking the logarithm of Eq. (B1), differentiating

with respect to height, and using Eqs. (B2) and (B3), we

find that qy* obeys

›
z
log(q

y
*)52g , (B4)

where

g5
LG

R
y
T2

2
g

R
a
T
. (B5)

We may refer to g as the fractional water vapor lapse

rate. Note that 1/g is the scale height for qy*.

Ignoring the small virtual effects of water vapor and

condensates, the zero-buoyancy approximation requires

that the clouds and the environment have the same

temperature at each height. As described in R14, this

reduces the bulk-plume equations for water vapor to

›
z
q
y
*5 «(q

y
2 q

y
*)2 c/M and (B6)

2›
z
q
y
5 d(q

y
*2 q

y
)1ac/M , (B7)

where qy* is the specific humidity within the saturated

updrafts (unitless, since qy* is a mass fraction), qy is the

specific humidity within the subsaturated environment,

M is the convective mass flux (kgm22 s21), « is the

fractional entrainment rate (m21), d is the fractional

detrainment rate (m21), c is the condensation rate

within updrafts (kgm23 s21), and a is the ratio of con-

densate evaporation in the environment to the water

vapor condensation in the updrafts. Using the C and E

notation adopted in section 1, the gross condensational

heating is C5Lc, and the gross evaporative cooling is

E5aLc. Therefore, the precipitation efficiency (PE) is

equal to (C2E)/C5 12a.

Writing qy as qy 5RHqy* and assuming that the frac-

tional variations in RH are small over a distance 1/g, we

can approximate these equations as

2gq
y
*5 «(RH2 1)q

y
*2 c/M and (B8)

RHgq
y
*5 d(12RH)q

y
*1ac/M . (B9)

These two equations can be solved for RH and c/M,

giving

RH5
d1ag2a«

d1 g2a«
and (B10)

c

M
5

d1 g2 «

d1 g2a«
gq

y
*. (B11)

Equation (B10) is identical to Eq. (24) of R14.

As in R14, our next step is to write down two equa-

tions for the moist static energy (MSE) of updrafts that

can be combined to give an expression for G. The MSE

for the unsaturated environment is h5 cpT1 gz1Lqy,

where we approximate cp here as the heat capacity at

constant pressure for dry air. Likewise, the MSE for a

saturated cloud is h*5 cpT1 gz1Lqy*. Using Eq. (B4),

we can write

›
z
h*52c

p
G1 g2Lgq

y
*.

Using Eq. (B2), we can write this as

›
z
h*5 g

�
11

q
y
*L

R
a
T

�
2G

�
c
p
1

q
y
*L2

R
y
T2

�
. (B12)

The second equation for h* is obtained by writing down

the bulk-plume equation for the updraft MSE:

›
z
h*5 «(h2 h*)

5 «L(q
y
2 q

y
*)

5 «(RH2 1)Lq
y
*. (B13)

We now depart from the derivation of R14 by as-

suming that M, RH, and a are all constant with height.

The constancy of M with height requires that «5 d.

Using the assumption of constant a, Eq. (B10) then

implies that « is proportional to g. Let us define the

constant a as a5 (12a)«/g. The entrainment rate, de-

trainment rate, the relative humidity from Eq. (B10),

and the condensation rate from Eq. (B11) can then be

written as

«5 d5
ag

12a
, (B14)

RH5
a1 a

11 a
, and (B15)

c

M
5

gq
y
*

11 a
. (B16)

Substituting Eqs. (B14) and (B15) into Eq. (B13), we get

›
z
h*52

a

a1 1
gLq

y
*. (B17)

Note that gLqy* 52L›zqy*, so this can be written as

›zha*5 0, where
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h
a
*5 c

p
T1 gz1

Lq
y
*

11 a
(B18)

is a conserved variable for the entraining clouds, which

we refer to as the entraining moist static energy.

Finally, equating the right-hand sides of Eqs. (B12)

and (B17) and using Eq. (B5) to express g in terms of G,
we can solve for G to find

G5
(11 a)g1 (q

y
*Lg/R

a
T)

(11 a)c
p
1 (q

y
*L2/R

y
T2)

. (B19)

b. Derivation of qy*(T)

We can describe the vertical profile of qy* as a function

of temperature by dividing Eq. (B4) by G and using the

definition of g from Eq. (B5), which gives

d

dT
log(q

y
*)5

L

R
y
T2

2
g

R
a
GT

.

Using Eq. (B19) to eliminate G, this becomes

d

dT
log(q

y
*)5

(R
a
L/R

y
T)2 c

p

R
a
T1 [q

y
*L/(11 a)]

.

To facilitate an analytical solution, we will approximate

the two explicit temperatures on the right-hand side by a

constant temperature T0. The equation can then be re-

arranged as

�
R

a
T
0

q
y
*

1
L

11 a

�
dq

y
*5

�
R

a
L

R
y
T
0

2 c
p

�
dT . (B20)

Denoting the surface temperature by Ts, we now in-

tegrate this equation from T to Ts to obtain

log

�
q
ys
*

q
y
*

�
1

L

(11 a)R
a
T

0

(q
ys
* 2 q

y
*)5 f (T

s
2T) ,

where qys* is the saturation specific humidity at the sur-

face, the constant T0 is chosen to be (Ts 1TFAT)/2 to be

as representative as possible of the temperature expe-

rienced between Ts and TFAT, and

f 5
L

R
y
T2
0

2
c
p

R
a
T
0

. (B21)

Exponentiating and rearranging, we obtain

Lq
y
*

(11 a)R
a
T

0

exp

�
Lq

y
*

(11 a)R
a
T
0

�
5 y

a
e2f (Ts2T) , (B22)

where

y
a
5

Lq
ys
*

(11 a)R
a
T
0

exp

�
Lq

ys
*

(11 a)R
a
T
0

�
. (B23)

Taking the Lambert W function of both sides of Eq.

(B22), and noting that the Lambert W function is de-

fined by W(xex)5 x, we get

q
y
*(T)5 (11 a)

R
a
T
0

L
W[y

a
e2f (Ts2T)] . (B24)

c. Derivation of z(T)

To obtain z(T), we first rearrange Eq. (B19) for G as

(11 a)c
p
1 (q

y
*L2/R

y
T2)

(11 a)g1 (q
y
*Lg/R

a
T)

dT52dz .

Replacing the explicit instances of T with T0 and using Eq.

(B24) to replace qy*, this can then be integrated to give

z(T)5 z
s
1

c
p

g
(T

s
2T)1

R
a
T
0

g
W(y

a
)

2
R

a
T
0

g
W[y

a
e2f (Ts2T)] , (B25)

where zs is the height of the surface, T0 is once again

chosen to be (Ts 1TFAT)/2, and ya and f are as defined in

Eqs. (B23) and (B21).

d. Derivation of py* and p

In the derivations of qy*(T) and z(T), we have ap-

proximated some of the instances of T by T0. To be

consistent with these approximations when we derive

py*(T) and p(T), we must approximate the explicit in-

stances of T as T0 on the right-hand sides of Eqs. (B2)

and (B3). Those equations can then be integrated to give

p
y
*(T)5 p

ys
* exp

"
L

R
y
T2
0

(T2T
s
)

#
and (B26)

p(T)5 p
s
exp

�
2g[z(T)2 z

s
]

R
a
T
0

�
, (B27)

where pys* is the water vapor saturation pressure at the

surface, ps is the total surface pressure, and z(T) is given

by Eq. (B25). It is straightforward to check that the

expression for specific humidity produced by combining

Eqs. (B1), (B26), and (B27) is identical to Eq. (B24).

e. Summary of equations

In summary, we have obtained an analytical solution

to radiative–convective equilibrium in the case of

height-invariant mass flux, relative humidity, and pre-

cipitation efficiency:
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z(T)5 z
s
1

c
p

g
(T

s
2T)1

R
a
T
0

g
W(y

a
)

2
R

a
T

0

g
W[y

a
e2f (Ts2T)] , (B28)

p(T)5 p
s
exp

�
2g[z(T)2 z

s
]

R
a
T
0

�
, (B29)

p
y
*(T)5 p

ys
* exp

"
L

R
y
T2

0

(T2T
s
)

#
, (B30)

q
y
*(T)5

R
a
p
y
*(T)

R
y
p(T)

5 (11 a)
R

a
T
0

L
W[y

a
e2f (Ts2T)] , (B31)

and

q
y
(T)5RHq

y
*(T) . (B32)

APPENDIX C

Derivation of Eq. (27)

Here, we derive Eq. (27), which gives an approximate

expression for upper-tropospheric Dh* as a function of

near-surface saturation water vapor mass fraction qys* .

To begin, note that the moist static energy (MSE) of the

undiluted parcel can be written as either

h*(z)5 c
p
T
u
(z)1 gz1Lq

yu
* (z) ,

where the subscript u is used to remind us that these are

the temperature and water mass fraction of the un-

diluted parcel, or as

h*(z
s
)5 c

p
T

s
1 gz

s
1Lq

ys
* .

Since MSE is conserved for the undiluted parcel,

h*(z)5 h*(z
s
) . (C1)

The saturated EMSE of the environment (also, the

EMSE of the diluted parcel) can be written as either

h
a
*(z)5 c

p
T(z)1 gz1

Lq
y
*(z)

11 a

or as

h
a
*(z

s
)5 c

p
T

s
1 gz

s
1

Lq
ys
*

11 a
.

Since saturated entrainingmoist static energy is constant

with height for the environment,

h
a
*(z)5 h

a
*(z

s
) . (C2)

Subtracting Eq. (C2) from Eq. (C1), we get h*(z)2
ha*(z)5 h*(zs)2 ha*(zs), which can be written as

[c
p
T
u
(z)1 gz1Lq

yu
* (z)]2

�
c
p
T(z)1 gz1

Lq
y
*(z)

11 a

�

5 (c
p
T
s
1 gz

s
1Lq

ys
* )2

�
c
p
T
s
1 gz

s
1

Lq
ys
*

11 a

�
.

This can be rearranged to give

[c
p
T
u
(z)1 gz1Lq

yu
* (z)]2 [c

p
T(z)1 gz1Lq

y
*(z)]

5
a

11 a
L[q

ys
* 2 q

y
*(z)] .

Noting that the left-hand side is the difference in satu-

rated MSE (not saturated EMSE) between the un-

diluted parcel and the environment, we obtain

Dh*(z)5
a

11 a
L[q

ys
* 2 q

y
*(z)] . (C3)

This says that, at height z, the difference in MSE be-

tween the undiluted parcel and the environment Dh is

proportional to the difference in saturated water vapor

mass fraction between the surface and height z. For all

but the largest Ts, qy* at the tropopause is sufficiently

small that it can be safely dropped from this equation, so

we arrive at Eq. (27).
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