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On the sizes and lifetimes of cold pools
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Cold pools of air, which are formed by evaporating precipitation, play a critical role in
the triggering of new precipitation. Despite their recognized importance, little effort has
been devoted to building simple models of their dynamics. Here, analytical equations are
derived for the radius, height, and buoyancy of a cylindrical cold pool as a function of
time, and a scale analysis reveals that entrainment is a dominant influence. These governing
equations yield simple expressions for the maximum sizes and lifetimes of cold pools. The
terminal radius of a cold pool is relatively insensitive to its initial conditions, with a typical
maximum radius of about 14 times the initial radius, give or take a factor of 2. The terminal
time of a cold pool, on the other hand, can vary over orders of magnitude depending on
its initial potential and kinetic energies. These predictions are validated against large-eddy
simulations.
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1. Introduction

By evaporative cooling, convective precipitation can generate
cold patches of boundary-layer air. These negatively buoyant
air masses spread out radially, forming ‘cold pools’ that push
up other boundary-layer air at their edge and thereby trigger
new convection. In particular, cold pools are responsible for
triggering boundary-layer updraughts that are wide enough to
convect deeply and precipitate (Khairoutdinov and Randall, 2006;
Böing et al., 2012), leading to a chain reaction of deep convection,
precipitation, cold pools, deep convection, and so on. Since
cold pools trigger new updraughts by mechanical forcing (Torri
et al., 2015; Jeevanjee and Romps, 2015), understanding cold-
pool dynamics is one of the keys to understanding tropical
precipitation.

In this article, we develop an ‘integral’ or ‘box’ model of
a uniform, cylindrical cold pool. Such models have been used
with some success to study gravity currents in a wide range of
applications (Huppert and Simpson, 1980; Dade and Huppert,
1995; Huppert, 1998; Harris et al., 2001; Ross et al., 2004; Hogg
et al., 2005). Here, we develop the governing equations for
a cold pool that is subject to entrainment, form drag, and
surface fluxes of enthalpy and momentum. With these governing
equations, we aim to develop a theory for the sizes and lifetimes
of cold pools in the tropical atmosphere. Such a theory would
be particularly relevant to global climate models, many of which
have begun to include representations of cold pools in their
convective parametrizations (Qian et al., 1998; Rozbicki et al.,
1999; Grandpeix et al., 2009; Grandpeix and Lafore, 2010; Rio
et al., 2013; Del Genio et al., 2015).

2. Cylindrical cold pool

Consider a cylindrical cold pool that is characterized by a
radius R, height H, uniform density anomaly ρ ′ (relative to
the environmental air at the same height), and a radial velocity ur

that is independent of z and proportional to the radial coordinate
r. Let us denote the volume of a cold pool by V , which is related
to R and H by

V = πHR2 . (1)

We will denote the rate of change of the cold pool’s radius as
U ≡ dR/dt. Within the cold pool, the radial velocity ur will be
defined as

ur = U

R
r . (2)

By continuity,

w = −2U

R
z . (3)

Therefore, the total kinetic energy of the cold pool is

KE = ρ

∫ R

0
(2πr) dr

∫ H

0

1

2

(
ur2 + w2

)
dz

= ρV

[
1

4
+ 2

3

(
H

R

)2
]

U2 . (4)

For R � H, the specific kinetic energy is simply U2/4. The
gravitational potential energy of the cold pool is simply

PE = gρ ′VH

2
. (5)
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Changes in volume occur through entrainment. We write this
as

d

dt
V = εUV , (6)

where ε, which has units of m−1, is the fractional entrainment
per distance traveled by the cold pool’s front. For example, if
a cold pool has a volume of 1 km3 and an entrainment rate of
ε = 10−4 m−1, then it will entrain 105 m3 as its radius increases
by one metre. By entraining environmental air with zero density
anomaly, entrainment tends to reduce the cold pool’s density
anomaly according to the following equation:(

d

dt
ρ ′

)
entrainment

= −εUρ ′ . (7)

3. Sinks of energy

Our goal is to obtain a set of governing equations for the cold
pool, including an equation for dU/dt. The gravity-current box
models constructed by Huppert and Simpson (1980), Ross et al.
(2004), and many others have neglected cold-pool dynamics
entirely. Instead, those studies have assumed that the cold pool’s
front moves at a speed U that is proportional to

√
Hgρ ′/ρ; this

is equivalent to assuming that the Froude number U/
√

Hgρ ′/ρ
is constant. This is a poor assumption because, in reality, the
Froude number starts at zero (for an initially stationary cold
pool), grows to positive values (as U grows), goes to infinity (as
ρ ′ goes to zero), and then becomes imaginary (for negative ρ ′).
In this study, all of the large-eddy simulations (LES) of cold pools
with surface enthalpy fluxes exhibit this behaviour, regardless of
whether H and ρ ′ are calculated for the entire cold pool or just
its head. Clearly, the assumption of a constant Froude number is
inadequate for modelling cold-pool dynamics.

We will find the governing equation for U by constructing the
budget for the cold pool’s total energy TE, which is the sum of its
potential energy PE and its kinetic energy KE. If we can determine
the sources and sinks of TE, then we can write down the energy
equation, which will take the form

d

dt
TE ≡ d

dt
(KE + PE) = sinks . (8)

Only one dU/dt will appear in this equation, and it is generated
by d/dt acting on U2 in the definition of KE. By rearranging, this
will give us our prognostic governing equation for U .

There are five sinks of total energy, which are caused by
entrainment, surface drag, form drag, other pressure forces, and
surface enthalpy fluxes. These five sinks are described in the
following subsections.

3.1. Entrainment

Entrainment reduces kinetic energy by diluting the momentum.
Consider a parcel with mass m and speed u. Its momentum
is mu and its kinetic energy KE is mu2/2. If the parcel
entrains a mass dm with no momentum, then its mass goes
to m + dm by conservation of mass and its speed goes to
mu/(m + dm) by conservation of momentum. Therefore, KE
goes to (1 − dm/m)KE. By analogy, when the cold pool entrains
a mass fraction εUdt, we will assume that the cold pool’s KE goes
to (1 − εUdt)KE. Therefore, entrainment affects total energy by(

d

dt
TE

)
entrainment

= −εUKE . (9)

Note that entrainment will also ‘puff up’ the cold pool, leading
to a lifting of the centre of mass of ρ ′ and, as a result, an increase
in PE. We assume, however, that this increase in PE is obtained
at the expense of KE, so that this has no net effect on the total
energy. (Note that turbulent entrainment can only occur if there
is motion, i.e. positive KE, so this effect will never drive KE to
negative values.)

3.2. Surface drag

Surface drag reduces kinetic energy by operating on the cold pool
with a force opposite to its motion. Using a bulk formula for
the surface momentum flux, surface drag reduces total energy
according to

(
d

dt
TE

)
surface drag

= −
∫

A
cdsρur3 d2x = −2

5
πcdsρR2U3 ,

(10)

where A is the area underneath the cold pool and cds = 1.5 × 10−3

is the surface drag coefficient.

3.3. Form drag

Form drag, caused by pressure forces between the cold pool
and the environment, also reduces kinetic energy. Dissipation of
energy from form drag is given by the integral of cdfρU3/2 over
the cold pool’s outer boundary area 2πRH, where cdf is the form
drag coefficient. This gives

(
d

dt
TE

)
form drag

= −πcdfρRHU3 . (11)

The correct value for cdf is unknown. It will be treated as a tunable
parameter and found by optimization.

3.4. Other pressure forces

Form drag is not the only force acting between the cold pool
and its environment. There are other pressure-gradient forces
that cannot be written with the standard drag-law formulation
used in Eq. (11). For example, a completely stationary cold pool
will have, in addition to the standard definition of buoyancy,
additional pressure-gradient forces acting between it and its
environment. These forces act to accelerate the environment so
that the boundaries of the cold pool may move without violating
the continuity equation and they cause the cold pool to accelerate
less rapidly than would be estimated from buoyancy alone.
The ‘effective buoyancy’ (Davies-Jones, 2003), which gives the
net vertical acceleration due to density gradients, is particularly
useful for understanding this process. Jeevanjee and Romps (2016)
have calculated analytical expressions for effective buoyancy and
have found that, for air at the surface, the difference between
buoyancy and effective buoyancy is particularly pronounced: for
a cylindrical cold pool at the surface with H = R, the effective
buoyancy is only about a quarter that of the buoyancy. This does
not mean, however, that only a quarter of the cold pool’s initial
PE is converted to the cold pool’s KE. Instead, the cold pool treats
the overlying environment like a flywheel, pumping energy into
it initially only to extract much of that energy as the cold pool
is squashed by the descending environment. Rather than attempt
to model this complicated dynamics in any detail, we will simply
define α as the fraction of the cold pool’s initial potential energy
that is immediately or eventually converted to kinetic energy of
the cold pool; 1 − α is the fraction that is permanently lost to
the environment by pressure forces not attributable to form drag.
Rather than write this as an explicit sink, we will simply introduce
a factor of α in the definition of the cold pool’s potential energy
PE, modifying Eq. (5) to

PE = αgρ ′VH

2
. (12)

The correct value for α is unknown, other than the fact that it
must be between zero and one. Like cdf , its value will be found by
optimization.
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3.5. Surface enthalpy fluxes

Surface enthalpy fluxes reduce the density anomaly ρ ′ and
therefore the potential energy. For surface fluxes of the density
anomaly, we can write

(
d

dt
ρ ′

)
surface fluxes

= 1

V

∫
A

cdsu
r(ρ ′

s − ρ ′) d2x

= − 2

3
cds

(
1 − ρ ′

s

ρ ′

)
U

H
ρ ′ , (13)

where ρ ′
s is the density of air that would be in equilibrium with

the surface. Since PE is proportional to ρ ′, these surface enthalpy
fluxes reduce TE according to

(
d

dt
TE

)
surface fluxes

= −2

3
cds

(
1 − ρ ′

s

ρ ′

)
U

H
PE . (14)

4. Governing equations

We can now specify the right-hand side of Eq. (8) as the sum of
all of the sinks given by Eqs (9), (10), (11), and (14). This gives

d

dt
KE + d

dt
PE = − εUKE − 2

5
πcdsρR2U3 − πcdfρRHU3

− 2

3
cds

(
1 − ρ ′

s

ρ ′

)
U

H
PE . (15)

Next, we need to write dPE/dt and dKE/dt in terms of U and
dU/dt. For dPE/dt, we first need to get an expression for the total
time derivative of ρ ′, which we obtain by combining Eqs (7) and
(13). This gives

d

dt
ρ ′ = −

[
ε + 2

3
cds

(
1 − ρ ′

s

ρ ′

)
1

H

]
Uρ ′ . (16)

The equation for dPE/dt then becomes

d

dt
PE = d

dt

(
αgρ ′VH

2

)
= d

dt

(
αgρ ′V2

2πR2

)

=
(

2

V

d

dt
V − 2

R

d

dt
R + 1

ρ ′
d

dt
ρ ′

)
PE

=
[
ε − 2

R
− 2

3
cds

(
1 − ρ ′

s

ρ ′

)
1

H

]
UPE . (17)

For dKE/dt, we can proceed in a similar way after taking the
derivative of Eq. (4). This gives

d

dt
KE =ρU3

[
1

4
εV + 2πH3(ε − 2/R)

]

+ ρU

(
1

2
V + 4π

3
H3

)
d

dt
U . (18)

Substituting the expressions for dPE/dt and dKE/dt from Eqs
(17) and (18) into the left-hand side of Eq. (15), we obtain

d

dt
U =

[
V

2
+ 4πH3

3

]−1 {
−

[
1

4
εV + 2πH3 (ε − 2/R)

]
U2

+ (2/R − ε)
αgρ ′VH

2ρ

− ε

[
1

4
V + 2π

3
H3

]
U2 − 2

5
πcdsR

2U2 − πcdf RHU2

}
.

(19)

The other governing equations are

d

dt
R = U , (20)

d

dt
V = εUV , (21)

d

dt
ρ ′ = −

(
ε + 2

3
cds(1 − ρ ′

s/ρ
′)

1

H

)
Uρ ′ , (22)

H = V/(πR2) . (23)

5. Simplified governing equations

Although Eqs (19)–(23) form a complete set of governing
equations for the uniform, cylindrical cold pool, they are too
complicated to provide much insight. Fortunately, many of the
terms can be dropped because they are negligible in magnitude.
To find out which terms can be dropped, we first need to find the
minimum height of the cold pool.

Note that Eqs (21) and (23) can be combined to give

d

dR
H = (ε − 2/R)H , (24)

which, assuming a constant ε, integrates to

H = H0

(
R0

R

)2

exp
[
ε(R − R0)

]
, (25)

where R0 and H0 are the initial radius and height, respectively. The
minimum value of H occurs where dH/dR = 0, which, according
to Eq. (24), is when R = 2/ε. As we will see in section 9, a
typical value for the fractional entrainment rate is ε = 0.2 km−1.
Therefore, the minimum H occurs around R = 10 km. Assuming
R0 = H0 = 1 km, Eq. (25) gives a minimum H of 60 m.

Now, let us turn our attention to the governing equation for
ρ ′, which can be written as

d

dR
ρ ′ = −

(
ε + 2cds

3H
+ 2cds

3H

|ρ ′
s|

ρ ′

)
ρ ′ , (26)

where we have assumed that ρ ′
s < 0, meaning that the virtual

potential temperature flux off the surface is positive. Assuming
that ε = 0.2 km−1 and cds = 1.5 × 10−3, 2cds/3H is equal to or
larger than ε only if H < 5 m. As we just learned, however,
H never gets smaller than about 60 m, which is an order of
magnitude larger than this threshold. Therefore, the second term
in parentheses can be dropped. Note that we cannot drop the last
term because ρ ′ can become very small compared with |ρ ′

s|. After
dropping the 2cds/3H term, we can then use Eq. (25) to replace
H in Eq. (26) and then we can integrate, yielding

ρ ′ = e−ε(R−R0)

[
ρ ′

0 + 2

9
cdsρ

′
s

1

R2
0H0

(R3 − R3
0)

]
. (27)

Note that this is an analytical expression for ρ ′ as a function of R.
Next, we need to simplify Eq. (19), which is the governing

equation for U . First, we will set the form drag coefficient cdf to
zero; this will be justified in section 9. Second, we will discard all
of the H3 terms. The H3 terms all stem from the contribution of
vertical momentum to the cold pool’s kinetic energy. Intuitively,
we know that the contribution of vertical momentum to the
kinetic energy of a cylindrical cold pool is only relevant in the
initial stages as it begins to fall, as some of the potential energy
gets briefly routed through vertical kinetic energy on its way to
becoming horizontal kinetic energy. Indeed, all of the H3 terms in
Eq. (19) are added to V terms and H3/V ∝ H/R, which decreases
rapidly in the initial stages of a cold pool. So, we throw away all
of the H3 terms; this is tantamount to writing

KE = ρV
1

4
U2 (28)
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rather than the full expression in Eq. (4). Of course, throwing
away the H3 terms adds some error to the initial development
of our theoretical cold pool. If we were interested in studying
the initial stages of cold pools – say, for R in the range of R0 to
2R0 – then this could be a problem. However, our focus here is
on the lifetimes and eventual sizes of cold pools, not the initial
stages of cold pools, so this approach will suit us fine. In addition,
this approximation overestimates the radial kinetic energy only
for R0 ≤ R � 2R0, which occupies an exceedingly small fraction
of the cold pool’s lifetime and maximum area: only ∼6 min of
a lifetime that is measured in hours and only ∼1% of the cold
pool’s eventual area.

At this point, the governing equation for U has been simplified
to

d

dt
U = −εU2︸ ︷︷ ︸

entrainment
drag

+
(

2

R
− ε

)
αgρ ′H

ρ︸ ︷︷ ︸
descent and puffing

−4cds

5H
U2︸ ︷︷ ︸

surface drag

. (29)

On the right-hand side, there are three sources and sinks of U ,
which are due to entrainment drag, exchange of energy between
PE and KE, and surface drag. As discussed above, H never becomes
small enough for cds/H to approach the magnitude of ε, so we may
discard the third term on the right-hand side. The middle term,
however, requires more thought. The piece proportional to 2/R is
the force that accelerates the cold pool by converting gravitational
potential energy to kinetic energy: cold-pool spreading leads to
descent that lowers its centre of mass. The piece proportional to
ε is a force that decelerates the cold pool by converting kinetic
energy to potential energy: cold-pool entrainment causes the cold
pool to puff up and raise its centre of mass. For R < 2/ε, the
centre of mass descends with time, accelerating the cold pool.
For R > 2/ε, the centre of mass ascends with time, decelerating
the cold pool. This is something of a strange notion: for R > 2ε,
expansion of the cold pool saps it of kinetic energy. As we will
see in section 9, the LES cold pools have an entrainment rate that
tends to decrease at large R in a way that keeps ε equal to or less
than 2/R, so this behaviour is largely avoided.

Qualitatively, the middle term on the right-hand side of Eq.
(29) has its biggest moment at the very beginning of the cold pool’s
life. In the short time that it takes for the cold pool to increase
its radius from R0 to 2R0, about 75% of the initial potential
energy is expended. For a cold pool with R0 = H0 = 1 km and a
1 K temperature anomaly, this only takes about 6 min. Therefore,
rather than try to model the detailed interactions between PE and
KE, we will simply put all of the initial PE into KE at the very
start. This allows us to drop the middle term on the right-hand
side of Eq. (29). By Eqs (12) and (28), we must give the cold pool
an initial U equal to

U0 =
√

2αgρ ′
0H0

ρ
. (30)

With the understanding that U is to be set to U0 as given by
Eq. (30) at time t = 0, we now have

d log(U) = −εdR .

Integrating, again assuming a constant ε, we obtain

U = U0 exp
[

− ε(R − R0)
]

, (31)

which is an analytical expression for U as a function of R. Note
that this describes a very simple process: the reduction of kinetic
energy by entrainment.

Since this is a very simple equation, it can be written in many
convenient forms. For example, we can solve for time t as a
function of cold-pool radius R,

t = 1

εU0

(
exp

[
ε(R − R0)

]
− 1

)
. (32)

We can also write down an expression for R(t),

R = R0 + 1

ε
log(1 + tεU0) , (33)

and an expression for U(t),

U = U0

1 + tεU0
. (34)

Although there are many such equations that can be written down,
the simplified theory for a cylindrical cold pool can be completely
and succinctly described by the following three equations:

R(t) = R0 + 1

ε
log(1 + tεU0), (35)

H(R) = H0

(
R0

R

)2

exp
[
ε(R − R0)

]
, (36)

ρ ′(R) = e−ε(R−R0)

(
ρ ′

0 + 2

9
cdsρ

′
s

1

R2
0H0

(R3 − R3
0)

)
. (37)

6. Radius and time of death

These equations can be used to predict the demise of cold pools.
Let us define the termination – or, more colloquially, the death – of
a cold pool as the time when it ceases to be cold. To acknowledge
the virtual-temperature effect of water vapour, we can be more
precise by defining the termination of a cold pool as the time
when ρ ′ = 0. Note that we will be using the equations derived in
the previous section, which apply to an isolated cold pool over
a flat surface with no mean wind; a mean wind, topography, or
collisions with other cold pools could all hasten a cold pool’s
demise. Throughout the article, we will denote the terminal time
and terminal radius as tρ′=0 and Rρ′=0, respectively.

We can solve for the terminal radius by setting ρ ′ = 0 in (37).
This gives

Rρ′=0 = R0

(
1 + 9

2cds

H0

R0

ρ ′
0

|ρ ′
s|

)1/3

, (38)

which, surprisingly, has no dependence on the entrainment rate.
Note that, for cds = 1.5 × 10−3, 9/2cds equals 3000. Therefore, so
long as R0|ρ ′

s| is not three orders of magnitude larger than H0ρ
′
0,

the terminal R is very well approximated by the second term in
parentheses. In fact, inspection of cold-pool transects from LES of
radiative–convective equilibrium (Jeevanjee and Romps, 2015)
reveals that H0/R0 ∼ 1 and ρ ′

0/|ρ ′
s| ∼ 1. Therefore, we can safely

simplify this expression to

Rρ′=0 = R0

(
9

2cds

H0

R0

ρ ′
0

|ρ ′
s|

)1/3

. (39)

Due to the 1/3 exponent, the dependence of Rρ′=0 on H0/R0 and
ρ ′

0/|ρ ′
s| is weak. If we take H0/R0 ≈ 1 and ρ ′

0/|ρ ′
s| ≈ 1, then

Rρ′=0 ≈ R0

(
9

2cds

)1/3

= 14R0 . (40)

Therefore, from pure physical reasoning, we can conclude that
the terminal radius of a cold pool is about 14 times its initial
radius. Figure 1 shows the dependence of Rρ′=0/R0 as a function of
H0ρ

′
0/R0|ρ ′

s|. Thanks to the 1/3 exponent in Eq. (38), the terminal
radius varies over a small range (7–31 km) even as H0ρ

′
0/R0|ρ ′

s|
is varied over two orders of magnitude (from 0.1–10).

Using R = Rρ′=0 in Eq. (32) gives the time when the cold pool
ceases to be cold:

tρ′=0 = 1

εU0

(
exp

[
ε(Rρ′=0 − R0)

]
− 1

)
. (41)

Published 2016. This article is a U.S. Government work
and is in the public domain in the USA. Q. J. R. Meteorol. Soc. 142: 1517–1527 (2016)



On the Sizes and Lifetimes of Cold Pools 1521

0.1 0.2 0.5 1.0 2.0 5.0 10.0

0

5

10

15

20

25

30

R�'=0

R0

9

2cds

1 3

H0

R0

'

'�s

�0

Figure 1. The terminal radius Rρ′=0 from Eq. (38) plotted as a function of
H0ρ

′
0/R0|ρ ′

s|. Thanks to the 1/3 exponent in Eq. (38), Rρ′=0 ranges only over a
factor of 4, as H0ρ

′
0/R0|ρ ′

s| varies over a factor of 100. The dashed lines denote the
values of H0ρ

′
0/R0|ρ ′

s| = 1 and Rρ′=0/R0 = 14 from Eq. (40).

While the terminal radius of a cold pool is constrained to lie
within roughly a factor of 2 of 14R0, the terminal time can vary
over a much larger range. This occurs because, in the expression
for tρ′=0, there is both a factor of 1/U0 and an exponential of
Rρ′=0. Note that the terminal radius does not depend on U0

because the two processes that reduce ρ ′ – entrainment and
surface fluxes – operate on a per-distance fashion. Therefore,
a halving of U0 leaves the terminal radius unchanged, but it
doubles the terminal time. The sensitivity of tρ′=0 is illustrated
in Figure 2, which shows Rρ′=0 and tρ′=0 as heat maps plotted
on axes of H0ρ

′
0/R0|ρ ′

s| and gH0ρ
′
0/ρ, assuming R0 = 1 km and

ε = 0.2 km−1. Both axes are chosen to range over two orders of
magnitude, centred on the values obtained using R0 = H0 = 1 km
and ρ ′

0 = |ρ ′
s| = 1 K. As in Figure 1, Rρ′=0 varies by only a factor

of 4 from its lowest value to its highest value (i.e. within a factor of

2 of 14 km). In contrast, tρ′=0 varies over a range covering more
than three orders of magnitude, from about 10 min to 10 days.

Since Eq. (38) has no dependence on ε, it is tempting to think
that entrainment plays no role in setting the terminal radius.
On the contrary, entrainment plays a very important role in
setting Rρ′=0. In the derivation of Eq. (26) for ρ ′, entrainment
allowed us to neglect the piece of the surface flux that scales as
ρ ′ (this was the argument about H having a finite lower bound).
Why were we able to neglect this term? After all, the surface
enthalpy flux is proportional to ρ ′ − ρ ′

s, so it might seem odd
that we could neglect the ρ ′ part of this. The reason, though, is
simple. Entrainment quickly reduces ρ ′ towards zero and it does
so without changing the total mass anomaly Vρ ′. As a result,
entrainment ‘hides’ the coldness of the cold pool from the surface
without changing the total amount of enthalpy needed from the
surface to terminate the cold pool, which is proportional to the
mass anomaly Vρ ′. Therefore entrainment plays a vital role in
generating Eq. (38) even though it does not show up explicitly
there.

In fact, we can see this mechanism at work in Eq. (39). Noting
that the initial cold-pool volume V0 is equal to πR2

0H0, we can
write (39) as

Rρ′=0 =
(

9V0ρ
′
0

2πcds|ρ ′
s|

)1/3

. (42)

In the numerator, V0ρ
′
0 is the cold pool’s initial mass anomaly,

which can only be reduced by surface fluxes. Since entrainment
quickly hides the coldness of the cold pool (i.e. ρ ′ → 0), |ρ ′

s|
is the density difference between the cold pool and the air
in direct contact with the surface. Therefore, cd|ρ ′

s| in the
denominator is proportional to the surface enthalpy flux. The
cube root is explained by the fact that the integrated surface flux is
proportional to the product of the cold-pool surface area (order
R2) and the total translation of the cold pool over the surface
(order R).

To quantify the effect of entrainment on Rρ′=0, we can
recalculate the expression for Rρ′=0 assuming zero entrainment.
To do this, we need to start over from Eq. (26), set ε = 0 and
retain the cdsρ

′ term. The resulting expression is

Rρ′=0 = R0

[
1 + 9

2cd

H0

R0
log

(
1 + ρ ′

0

|ρ ′
s|

)]1/3

(for ε = 0) .

(43)
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Figure 2. (a) The terminal radius Rρ′=0 given by Eq. (38), plotted as a function of H0ρ
′
0/R0|ρ ′

s| and gH0ρ
′
0/ρ for R0 = 1 km and ε = 0.2 km−1. Note that Rρ′=0

depends only on H0ρ
′
0/R0|ρ ′

s| and varies only over a factor of 4 for a factor-of-100 range in H0ρ
′
0/R0|ρ ′

s|. (b) The same, but for the terminal time tρ′=0 obtained from
Eq. (41). Unlike the terminal radius, the terminal time depends on both expressions and it ranges here over three orders of magnitude. The circles denote the locations
in parameter space of the large-eddy simulations presented in section 8.
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This is practically the same as Eq. (13) of Ross et al. (2004),
who derived a box model for cold pools by ignoring entrainment
entirely. The one difference is the factor of 9/2 here, which is 3
in Ross et al. (2004), stemming from the mistake of using ur = U
rather than ur = Ur/R. For small ρ ′

0/|ρ ′
s|, Eq. (43) simplifies to

Eq. (38). For large ρ ′
0/|ρ ′

s|, however, Eqs (43) and (38) differ
substantially. If a cold pool with R0 = H0 = 1 km is 2 K colder
than its surroundings and if the ambient air–sea temperature
difference is 0.2 K, then ρ ′

0/|ρ ′
s| equals 10. In this case, Eq. (38)

predicts Rρ′=0 = 31 km while Eq. (43) predicts Rρ′=0 = 19 km. By
hiding the cold pool’s total thermal deficit (equivalently, its ρ ′V),
entrainment reduces surface fluxes and increases the terminal
sizes of cold pools.

Before concluding this section, let us consider whether the
initial condition assumed here – a static cylinder of cold air – is
appropriate and generalizable to more realistic conditions. In
a real rain event, there is a finite time during which cold
air is generated and fed into the cold pool. Given a typical
updraught speed of 10 m s−1 and an atmospheric scale height
of 10 km, we might expect the duration of precipitation shafts
to be about 10 km/10 m s−1 ≈ 20 min. Indeed, this is the typical
lifetime of precipitation shafts in the large-eddy simulations of
radiative–convective equilibrium performed by Jeevanjee and
Romps (2015). Since 20 min is short compared with the lifetimes
of cold pools predicted here, the use of instantaneously generated
cold pools is appropriate.

To apply Eqs (41) and (42) to cold pools that are measured
in observations or LES, we must generalize the definitions of R0,
V0, ρ ′

0, and U0 to those cases. For R0, this is straightforward:
we can define R0 as the halfwidth of the precipitation shaft or,
for non-circular rain footprints, we can define R0 as the square
root of the footprint divided by π. For V0, U0, and ρ ′

0, we can
calculate these variables based on the air that flows laterally out
of the rain shaft. For notational simplicity, imagine that the rain
shaft has a circular footprint of radius R0. Then the total initial
cold-pool mass (ρ0V0), mass anomaly (ρ ′

0V0), and kinetic energy
(ρ0V0U2

0 /4) are given by

ρ0V0 =R0

∫ T

0
dt

∫ 2π

0
dφ

∫ zBL

0
urH(ur)ρ dz, (44)

ρ ′
0V0 =R0

∫ T

0
dt

∫ 2π

0
dφ

∫ zBL

0
urH(ur)ρ ′ dz, (45)

ρ0V0
1

4
U2

0 =R0

∫ T

0
dt

∫ 2π

0
dφ

×
∫ zBL

0
urH(ur)

[
ρ ′gz + 1

2
ρur2 + 1

2
ρw2

]
dz ,

(46)

where zBL is the depth of the boundary layer, ρ0 is the density of
boundary-layer air, φ is the azimuth about the cold-pool centre,
T is the duration of the precipitation shaft, andH is the Heaviside
unit step function. After solving these equations for V0, U0, and
ρ ′

0, the results can be plugged into Eqs (41) and (42) to estimate
the terminal time and radius.

7. Measuring in LES

To evaluate this theory, we will use large-eddy simulations of
individual cold pools initialized as cold cylinders of air. To keep
track of a cold pool’s evolution, we will use a passive tracer, the
mixing ratio of which is initialized to one within the initial cold
pool and zero outside. As in Romps and Kuang (2010), we will
refer to this as the purity tracer. Since cold pools in LES do not
retain a uniform, cylindrical shape, we must make some choices
about how to calculate the cold pool’s volume, radius, and density
anomaly.

Let us define

〈X〉 =
∫ ∞

0
Xqρ dz,

where q is the purity mixing ratio and X is one of the following: 1,
q, u, v, and ρ ′. Here, u and v are the horizontal wind components
and ρ ′ = ρ(x, y, z, t) − ρenv(z, t = 0), where ρenv(z, t = 0) is the
initial profile of density in the environment. In all of the LES, the
instantaneous two-dimensional distributions of these quantities
are saved every 2 min. From these quantities, we can define a cold-
pool height distribution h(x, y, t), total mass M(t), radial-velocity
distribution ur(x, y, t), density-anomaly distribution ρ ′(x, y, t),
mean density anomaly ρ ′(t), and radius R(t). To find the correct
expressions for these variables, we will find the expressions that
give the correct answers for a uniform cylinder. For a cylinder
with uniform density ρ, uniform purity q, and depth h,

〈X〉 = hρqX .

From this equation, we can see, for example, that 〈1〉2/ρ〈q〉 equals
the cold pool’s height h. Therefore, for the LES output, we define
the cold-pool height h(x, y, t) as

h(x, y, t) = 〈1〉2

ρ〈q〉 , (47)

where ρ is a constant representative density near the surface, and
we define the total mass of the cold pool as

M(t) =
∫

A

〈1〉2

〈q〉 d2x , (48)

where A is the area over which 〈q〉 is above some threshold value
(we use 0.01 kg m−2). Proceeding in the same way, we find that
ur(x, y, t), ρ ′(x, y, t), and ρ ′(t) should be defined as

ur(x, y, t) = 〈u〉x + 〈v〉y
〈1〉√x2 + y2

, (49)

ρ ′(x, y, t) = 〈ρ ′〉
〈1〉 , (50)

ρ ′(t) = 1

M

∫
A

〈ρ ′〉〈1〉
〈q〉 d2x . (51)

To borrow a phrase from computer science, we are ‘overloading’
the symbol ρ ′ to mean different things in different contexts
in order to simplify the notation. When ρ ′ refers to a four-
dimensional variable, it equals ρ(x, y, z, t) − ρenv(z, t = 0). When
ρ ′ refers to a three-dimensional variable, it is given by Eq. (50).
When ρ ′ refers to a one-dimensional variable, it is given by
Eq. (51). In the text and figures that follow, context will make
clear which definition is being used.

We define the cold-pool radius R(t) somewhat differently, so
that it captures the location of the cold-pool front as accurately
as possible. For a uniform cylinder, the radius R can be written as
the following integral for any n ≥ 1:

R = n + 1

n

∫
A〈1〉rn−1 d2x∫
A〈1〉rn−2 d2x

. (52)

For a non-uniform cold pool, this will give the distance from the
centre to the edge that is farthest away in the limit of n → ∞. Since
this limit is noisy, we use n = 10, which gives an accurate and
smooth R(t). The radius obtained in this way is very similar to the
one obtained by taking the square root of the area of 〈q〉 > 0.01
divided by π. Finally, we diagnose the fractional entrainment rate
ε as

ε = d

dR
log(M) . (53)
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Table 1. A list of the large-eddy simulations indicating whether or not surface drag
was present, whether or not surface enthalpy fluxes were present, the temperature
of the cold pool Tcp, the temperature of the environmental surface air Tenv, and

the temperature of the sea-surface Tsurf.

LES # Surface drag? Enthalpy fluxes? Tcp (K) Tenv (K) Tsurf (K)

1 No No 299 300 301
2 No Yes 299 300 301
3 Yes No 299 300 301
4 Yes Yes 299 300 301
5 Yes Yes 299 300 304
6 Yes Yes 299.75 300 301
7 Yes Yes 296 300 304
8 Yes Yes 296 300 316
9 Yes Yes 299.75 300 300.25

8. The large-eddy simulations

Table 1 describes the nine LES that are used for comparison
with the theory developed in the previous sections. All of the
simulations were initialized with a motionless, cylindrical cold
pool with a uniform temperature perturbation defined relative to
the environment at the same height. For computational feasibility,
all of the cold pools have an initial height H0 and initial radius R0

equal to one kilometre; larger initial heights and radii would have
required larger computational domains. Both the cold pool and
the environment are dry and have a dry-adiabatic lapse rate. A
small amount of random noise is added to the initial temperature
field to break the symmetry. For each of the nine simulations,
Table 1 specifies whether or not surface fluxes of momentum (i.e.
drag) or enthalpy are communicated between the surface and
the atmosphere. In either case, the fluxes are calculated using the
bulk aerodynamic formula, i.e. −cdsρ|u|u or cdsρ|u|(Tsurf − T),
with a drag coefficient cds = 1.5 × 10−3. The temperatures in
Table 1 specify the initial cold-pool surface air temperature Tcp,
the initial environmental surface air temperature Tenv, and the
surface temperature Tsurf. The identifying numbers (i.e. 1–9)
assigned to each simulation in Table 1 will be used throughout
the article.

All of the LES are performed using Das Atmosphärische Modell
(DAM: Romps, 2008), which is a fully compressible large-eddy
model. All of the simulations are performed without radiation,
without microphysics (all of the simulations are dry), and without
planetary rotation. The domains have a model top at 3 km
and a square horizontal domain that is sufficiently large to
encompass the cold pool throughout the 3.5 h of simulation
(38.4 km square for all of the simulations). The horizontal
grid spacing is �x = �y = 50 m and the vertical grid spacing
is �z = 10 m for z < 600 m, �z = 50 m for z > 1300 m, and
smoothly transitioning in between.

9. Comparing LES and theory

Our objective in this section is to compare the cold-pool theory
with the large-eddy simulations of cold pools. Before we can
do that, however, we must use the LES to find the appropriate
values of α (the fraction of gravitational energy converted to
cold-pool kinetic energy) and cdf (the form-drag coefficient). For
this purpose, we use LES 1 and our full theoretical equations
((19)–(23)) to find the best choice of α and cdf . We use LES 1 for
this exercise because it is the simplest of all the LES, in the sense
that it has neither surface drag nor enthalpy fluxes; including
those surface fluxes would only increase the sources of potential
error in the theoretical calculation and therefore add error to the
calculated best-fitting α and cdf . Also, to reduce the treatment of
entrainment as a potential source of error, we give the theoretical
equations the actual ε(R) diagnosed from the LES.

Figure 3 plots the root-mean-square difference between R(t)
calculated from Eqs (19)–(23) and R(t) calculated from Eq. (52).
The best fits are obtained for cdf = 0, indicating that form drag is
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Figure 3. For LES 1 (no surface fluxes of momentum or enthalpy and an initial
299/300/301 K temperature distribution), the 3 h root-mean-square difference
between the R(t) diagnosed from the LES and the R(t) governed by Eqs (19)–(23)
for different values of (abscissa) α and (ordinate) cdf . The best fit occurs for
cdf = 0 and α = 0.7, which is highlighted with a white box; these values are used
in all subsequent figures.

negligible. This is an interesting result, especially in comparison
with recent findings that cloud thermals experience significant
drag (Romps and Charn, 2015), despite having, like cold pools, an
internal vortex-ring circulation. These results are not inconsistent,
because wave drag was identified as a likely dominant source of
drag for cloud thermals (Romps and Öktem, 2015), whereas there
is no wave drag in these simulations with neutral stratification.
(Waves can be supported on the interface between the cold pool
and the environment, but there is no way for those waves to
propagate away from the cold pool and therefore no way for them
to remove momentum from the cold pool.) Also, it is important to
note that the entrainment drag is calculated as if the entrained air
has zero momentum, which may overestimate the entrainment
drag and therefore give a best fit with a less-than-realistic cdf . As
for α, although it is difficult to tell from Figure 3, the best fit
occurs for a value of 0.7. In other words, 70% of the cold pool’s
gravitational potential energy is converted to kinetic energy of the
cold pool, with the remainder going into the kinetic energy of the
environment. These values of cdf = 0 and α = 0.7 will be used in
all theoretical calculations henceforth.

Figure 4(a) shows that the theoretical solution for R(t) using
the full theory with ε(R) diagnosed from the LES is indeed a
good fit to the LES. However, in order to use the simplified
equations derived in section 5, we must pick a constant fractional
entrainment rate. Figure 4(b) shows that the full theory – i.e. Eqs
(19)–(23) from section 4 – with a constant fractional entrainment
rate of ε = 0.2 km−1 is also a good fit to the LES. For comparison,
the solutions with ε = 0.1 and 0.3 km−1 are shown; these are
poor fits. Next, we can evaluate the simplified theory – i.e. Eqs
(35)–(37) from section 5 – by plotting their R(t) against the
R(t) from the full theory. As argued in section 5, the full theory
and simplified theory should agree quite well. Indeed, Figure 4(c)
confirms this.

Now, what do these LES and theoretical cold pools look like
from a bird’s-eye view? To give a sense for this, Figure 5 gives
the plan view of h(x, y, t), ur(x, y, t), and ρ ′(x, y, t) (multiplied
by −ρ/T to convert it to a temperature perturbation) for LES 4
(arguably, the most realistic of the nine simulations) at 30 min
intervals, along with the corresponding simplified theory from Eqs
(35)–(37). Figure 6 plots the same information, but azimuthally
averaged at 30 min intervals. Of course, there is a great deal of
internal structure to real cold pools that cannot be captured
by a uniform cylinder. Nevertheless, the simplified theory does
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a decent job of capturing the size and horizontally averaged
properties of the LES cold pool. Note that, in the azimuthal
averages, many of the largest discrepancies between the LES and
theory occur at small radii, which make a small contribution to
the cold pool’s area.

A key conclusion from section 5, codified in Eq. (35), is that
R(t) is largely insensitive to drag and surface enthalpy fluxes. We
can check this by comparing the R(t) from LES 1–4, which share
the same initial temperature distribution but differ in whether
or not they have surface drag. These R(t) are plotted in Figure
7(a), where R(t) is on the abscissa to be consistent with the other
panels. The dashed curves have no surface drag, while the solid
curves do. The black curves have no surface enthalpy flux, while
the red curves do. The triangles denote where the cold pools
terminate (i.e. cease to be cold); trajectories beyond those radii

are plotted in pink. All of the cold pools have very similar R(t), in
agreement with the theory.

Significant deviations from a common R(t) occur only when
the cold pools begin to have significant regions of ρ ′ � 0, i.e. as
they are dying. This only occurs for the red curves because only
those simulations have surface enthalpy fluxes. Figure 7(b) shows
the mean ρ ′ as a function of radius. As the mean ρ ′ approaches
zero, the entrainment rate, shown in Figure 7(c), starts to grow
rapidly. This occurs because the stratification between the cold
pool and its environment is removed, allowing enhanced mixing
by mechanical forcing and even by buoyant convection for regions
of the ‘cold’ pool with ρ ′ < 0.

For LES 1 and 3, which have no surface enthalpy fluxes, the
total mass anomaly Vρ ′ does not change in time, so the cold
pool remains cold forever. It is intuitive that such a cold pool
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Figure 7. As a function of cold-pool radius R, (a) time, (b) cold-pool density anomaly and (c) cold-pool entrainment rate for LES 1–4 in Table 1 (i.e. with an initial
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the entrainment rates are also very similar, up to the point where cold pools start to have enhanced mixing due to patches of neutrally or positively buoyant air.

would continue to spread until it has blanketed the entire domain.
Equation (29), however, suggests that this might not happen if
ε exceeds 2/R. As discussed in section 5, this would cause PE
to grow as the cold pool expands, which would happen at the
expense of KE. If ε remained larger than 2/R for long enough,
this could grind the cold pool to a halt, leaving untapped PE
sitting motionless in the atmosphere. This is an absurd result, so
something must prevent this from happening. That ‘something’
is that ε must decrease with radius to stay roughly at or below
a bound of 2/R. This behaviour can be seen in the black curves
in Figure 7(c). At about 7 km, 2/R becomes small enough to
equal ε, but ε decreases to stay at or under the 2/R bound for all
R > 7 km.

Another set of key theoretical predictions consists of Eqs (38)
and (41), which give expressions for the terminal radius Rρ′=0

and the terminal time tρ′=0. Figure 8 plots the terminal radius and
time from the seven LES with surface enthalpy fluxes against the
corresponding predictions from Eqs (38) and (41), respectively.
One-to-one lines are added for visual reference. Although not
perfect, the simple theory does a good job of predicting the
location and timing of cold-pool death.

It is interesting to note that LES 4, which has surface drag,
terminates at a larger radius and later time than LES 2, which is
the same in all respects except that it has no surface drag. This
may be counterintuitive, since it is natural to imagine that surface
drag would slow down the cold pool, leading to an earlier demise
at a smaller radius. On the contrary, the addition of surface drag
reduces the low-level wind speed relative to the bulk of the cold
pool, thereby reducing the enthalpy fluxes. Since it is the zero
crossing of ρ ′ that terminates a cold pool, surface drag leads to a
later termination at a larger radius.

10. Summary and discussion

With the goal of understanding the dynamics of real cold pools, we
have derived the governing equations for a uniform, cylindrical
cold pool. Inspection of the magnitudes of terms in the equations
reveals that the cold-pool dynamics has only a weak dependence
on surface drag that can be neglected. With this and some other
well-justified approximations, the governing equations reduce
to a very simple theory for cold-pool dynamics, given by Eqs
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Figure 8. (a) For LES 2 and 4–9, the radii at which the cold pools terminate (i.e. cease to be cold) are plotted against the corresponding theoretical prediction. Note
that LES 1 and 3 are not included, because their lack of surface enthalpy fluxes means that they never cease to be cold (i.e. never achieve ρ′ = 0). (b) The same, but for
the time at which the cold pools terminate.

(35)–(37). The cold-pool radius is a function of time that depends
only on the initial radius, the initial gravitational potential energy,
and the fractional entrainment rate.

These equations make predictions for the lifetime and final size
of cold pools, defining the demise of a cold pool as when it ceases
to be cold on average. The expressions for those terminal sizes
and times are given by Eqs (38) and (41) for an initially stationary
cold pool, or by Eqs (41) and (42) for a more realistic cold pool
with initial values estimated according to Eqs (44)–(46). Although
entrainment reducesρ ′ dramatically, the terminal radius – defined
as the cold-pool radius when ρ ′ = 0 – has no dependence on the
entrainment rate. By quickly ‘hiding’ the coldness of the cold
pool from the surface, entrainment simplifies the estimation of
surface fluxes without affecting the total enthalpy fluxes needed
to terminate the cold pool; this leads to a very predictable
terminal radius that does not depend on the precise value of
the entrainment rate. The equations show that the final radius is
tightly constrained to be in the vicinity of ∼14 times the initial
radius, while the terminal time can range over several orders of
magnitude. Comparison with large-eddy simulations, as shown
in section 9, validates the simple theory and its predictions for
cold-pool sizes and lifetimes.

We can also compare our results with previous studies that
have measured the sizes and lifetimes of cold pools. Tompkins
(2001) studies cold pools in a large-eddy simulation of tropical
unorganized convection and finds the mean maximum radius
to be 8.6 km. It is important to note, however, that Tompkins
(2001) uses a very different definition of cold-pool radius. Here,
we measure the radius as the distance from the centre of the cold
pool to the outer perimeter of the original cold-pool air, whether
or not it is still ‘cold’; Tompkins (2001) measures the radius from
the centre of the cold pool to the perimeter of the currently ‘cold’
air (specifically, air with buoyancy less than −0.005 m s−2 or a
potential temperature anomaly less than −0.15 K). Feng et al.
(2015) study cold pools in an LES using a similar definition
(with a buoyancy threshold of −0.003 m s−2) and find a similar
result: a mean maximum radius of 6.4 km. As seen in Figure
5, the definition of radius used by Tompkins (2001) and Feng
et al. (2015) gives a maximum radius that is only about half as
large as the terminal radius. If we account for this by doubling
their reported maximum radii, we infer that they simulated
cold pools with mean maximum radii of about 13–17 km. This
agrees with the theory presented here, which predicts a ∼14 km
terminal radius for a cold pool with an initial radius of 1 km and
H0ρ

′
0/R0|ρ ′

s| ∼ 1.
The theory also agrees well with the reported lifetimes.

Tompkins (2001) reports a mean cold-pool lifetime of 2.5 h
and a mean initial temperature anomaly of −1 K. Using this
temperature anomaly to set ρ ′, using a fractional entrainment
rate of 0.2 km−1 (as diagnosed in section 9), and using an initial
radius and height of 1 km, Eq. (41) predicts a lifetime of 2.8 h,
which is in close agreement with 2.5 h. Feng et al. (2015) report a

shorter lifetime of 1.2 h, but this agrees, at least qualitatively, with
their smaller initial temperature anomaly of −0.5 K (see their
figure 6(d)). Changing the temperature anomaly from −1 K to
−0.5 K, while holding the other variables constant, reduces the
lifetime predicted by Eq. (41) from 2.8 to 2.1 h. Differences in the
air–sea temperature difference or in the initial cold-pool height
or radius could easily explain the remaining discrepancy.

It is more difficult to observe cold pool sizes in nature and even
more difficult to measure their lifetimes. At least anecdotally, it
appears that cold pools reach a wider range of sizes over the
real tropical oceans than they do in large-eddy simulations of
the tropical maritime atmosphere. For example, Black (1978),
Zuidema et al. (2012), and Feng et al. (2015) observe real cold
pools over tropical oceans with radii of 50–100, 20–30, and
5–25 km, respectively. As noted in the discussion of Eq. (38), it is
difficult to generate a wide range of terminal radii by varying just
the normalized height H0/R0 or the normalized density anomaly
ρ ′

0/|ρ ′
s|, since they contribute to the terminal radius with only

one-third power. Instead, the variance in the initial radius in Eq.
(38) or initial mass anomaly in Eq. (42) is likely the single largest
contributor to the observed variance in the terminal radius. For
example, assuming a plausible boundary-layer depth H0 of 1 km
and a plausible ratio of ρ ′

0/|ρ ′
s| = 1, Eq. (38) would require

an initial radius of R0 = 20 km to produce a terminal radius
of 100 km. Of course, this does not imply a need for a single
cylindrical rain shaft that is 40 km across. By Eq. (42), it would
also suffice to have five, nearby, 2 km radius rain shafts of 30 min
duration that replenish the air in their boundary-layer volume 20
times during their lifetime, which would be possible with modest
radial winds of 10 m s−1 at the edge of the rain shafts.

In the study of convection, convective entrainment is often
cited as the biggest obstacle to developing advanced theories of
convective updraughts (de Rooy et al., 2013). Based on the results
shown here, we suspect that cold-pool entrainment may prove to
be as thorny an issue for cold pools as convective entrainment
has been for convection. The similarities are striking. Consider,
for example, that a bulk-plume model treats updraughts as
homogeneous at each height and our ‘bulk-pool’ model treats
cold pools as homogeneous at each time. Also, as in a bulk-plume
model, we have been forced to specify an entrainment rate that is
motivated by empiricism rather than theory. Fortunately, a cold
pool’s terminal radius is independent of the entrainment rate, so
the theory presented here for cold-pool sizes is likely to stand the
test of time. On the other hand, the equations given here for a cold
pool’s velocity U(t) and terminal time tρ′=0 are highly dependent
on the chosen entrainment rate. Since ε may vary significantly
with initial radius or may evolve in important ways at larger radii
(as suggested by the black curves in Figure 7(c)), the extrapolation
of our results for U(t) and tρ′=0 to cold pools with R0 much larger
than those simulated here is not without risk. To know for sure
how well these equations and assumptions apply to larger cold
pools, more work is needed on simulating and observing a wide
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range of cold pool types and on developing theories for cold-pool
entrainment.
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Böing SJ, Jonker HJJ, Siebesma AP, Grabowski WW. 2012. Influence of the
subcloud layer on the development of a deep convective ensemble. J. Atmos.
Sci. 69: 2682–2698.

Dade WB, Huppert HE. 1995. A box model for non-entraining, suspension-
driven gravity surges on horizontal surfaces. Sedimentology 42: 453–470.

Davies-Jones R. 2003. An expression for effective buoyancy in surroundings
with horizontal density gradients. J. Atmos. Sci. 60: 2922–2925.

Del Genio AD, Wu J, Wolf AB, Chen Y, Yao M-S, Kim D. 2015. Constraints
on cumulus parametrization from simulations of observed MJO events.
J. Clim. 28: 6419–6442.

Feng Z, Hagos S, Rowe AK, Burleyson CD, Martini MN, de Szoeke SP. 2015.
Mechanisms of convective cloud organization by cold pools over tropical
warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model.
Earth Syst. 7: 357–381.

Grandpeix J-Y, Lafore J-P. 2010. A density current parametrization coupled
with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci. 67:
881–897.

Grandpeix J-Y, Lafore J-P, Cheruy F. 2009. A density current parametrization
coupled with Emanuel’s convection scheme. Part II: 1D simulations.
J. Atmos. Sci. 67: 898–922.

Harris TC, Hogg AJ, Huppert HE. 2001. A mathematical framework for the
analysis of particle-driven gravity currents. Proc. R. Soc. London Ser. A:
Math. Phys. Eng. Sci. 457: 1241–1272.

Hogg AJ, Hallworth MA, Huppert HE. 2005. On gravity currents driven by
constant fluxes of saline and particle-laden fluid in the presence of a uniform
flow. J. Fluid Mech. 539: 349–385.

Huppert HE. 1998. Quantitative modelling of granular suspension flows. Philos.
Trans. R. Soc. London Ser. A 356: 2471–2496.

Huppert HE, Simpson JE. 1980. The slumping of gravity currents. J. Fluid
Mech. 99: 785–799.

Jeevanjee N, Romps DM. 2015. Effective buoyancy, inertial pressure, and the
mechanical generation of boundary-layer mass flux by cold pools. J. Atmos.
Sci. 72: 3199–3213.

Jeevanjee N, Romps DM. 2016. Effective buoyancy at the surface and aloft. Q.
J. R. Meteorol. Soc. 142: 811–820.

Khairoutdinov M, Randall D. 2006. High-resolution simulation of shallow-to-
deep convection transition over land. J. Atmos. Sci. 63: 3421–3436.

Qian L, Young GS, Frank WM. 1998. A convective wake parametrization
scheme for use in general circulation models. Mon. Weather Rev. 126:
456–469.

Rio C, Grandpeix J-Y, Hourdind F, Guichard F, Couvreux F, Lafore J-P,
Fridlind A, Mrowiec A, Roehrig R, Rochetin N, Lefebvre M-P, Idelkadi
A. 2013. Control of deep convection by sub-cloud lifting processes: The
ALP closure in the LMDZ5B general circulation model. Clim. Dyn. 40:
2271–2292.

Romps DM. 2008. The dry-entropy budget of a moist atmosphere. J. Atmos.
Sci. 65: 3779–3799.

Romps DM, Charn AB. 2015. Sticky thermals: Evidence for a dominant
balance between buoyancy and drag in cloud updraughts. J. Atmos. Sci. 72:
2890–2901.

Romps DM, Kuang Z. 2010. Do undiluted convective plumes exist in the upper
tropical troposphere? J. Atmos. Sci. 67: 468–484.
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