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ABSTRACT: Analytic solutions are derived for a convecting atmosphere with mean ascent using a zero-buoyancy bulk-
plume approximation for moist convection. It has been suggested that such solutions should serve as a model for the
relationship between humidity, instability, and precipitation in the tropics, but it is shown here that this interpretation is
incompatible with the observed weak temperature gradient (WTG). Instead, the solutions can be used to understand the
atmospheric state averaged over all tropical convecting regions. Using the analytic solutions in this way, they predict the
changes in humidity, instability, and precipitation as a function of the size of the moist patch in a convectively
aggregated state.
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1. Introduction

In recent years, there has been substantial progress in un-
derstanding the structure of radiative–convective equilibrium
(RCE). This progress was sparked by Singh and O’Gorman
(2013), which introduced the zero-buoyancy approximation
for convective plumes. In this approximation, convection is
treated as having the same temperature as its surrounding
environment. This approximation is clearly inadequate for
understanding the dynamics of convection, but its use for un-
derstanding atmospheric stratification can be justified by the
fact that typical cloud buoyancies in the tropics are less than
1K (Lawson and Cooper 1990; Romps 2010; Sherwood et al.
2013; Romps and Charn 2015). The implication of the zero-
buoyancy approximation for RCE is that the mean convective
available potential energy (CAPE) is related to the mean
saturation deficit of the free troposphere because the satura-
tion deficit affects entraining clouds, which, in turn, set the
mean lapse rate. This idea was validated in a series of cloud-
resolving experiments (Singh and O’Gorman 2013; Seeley and
Romps 2015, 2016).

The zero-buoyancy approximation has also been used to
derive analytic solutions for RCE’s relative humidity (RH) and
lapse rate, and to show that RH is, to good approximation, an
invariant function of temperature in the tropical troposphere
(Romps 2014). This latter result that has been shown to hold in
global climate models (Po-Chedley et al. 2019) and has been
used to explain the ;2%K21 increase in global precipitation
rate (Jeevanjee andRomps 2018). Furthermore, Romps (2016)
showed that the solutions of Romps (2014) could be integrated
in height (with a particular choice of entrainment rate) to give
an analytic expression for CAPE.

All of this progress has been in the context of RCE, but the
tropical atmosphere has large-scale circulations with regions of
ascent (e.g., the ITCZ) and descent (e.g., the subtropics). To
understand how these large-scale circulations affect relative

humidity and static stability, the solutions of Romps (2014)
need to be generalized to allow for a nonzero net mass flux. An
attempt at this was made by Singh et al. (2019), but, as shown
here, that work contained two errors: an error of mathematics
and an error of interpretation. Regarding the latter, Singh et al.
(2019) interpreted their solutions as a useful framework for
understanding the covariation of RH, CAPE, lapse rate, and
precipitation in the tropics, but it will be argued here that this
is not a correct interpretation. Instead, the solutions provide
insight into themean properties of tropical convecting regions,
the stability of the tropics as a whole, and the state of con-
vective aggregation in numerical models. In the sections that
follow, the bulk-plume and zero-buoyancy approximations are
used to extend the analytic RCE solutions of Romps (2014) to
include net vertical motion and to explore their implications.

2. Derivation

RCE may be thought of as the steady-state solution of an
atmosphere in a box: we control the radiative heating rate Q
(Wm23), either by specifying it directly or by choosing a ra-
diation scheme, and there are fluxes of sensible heat and water
that pass through the floor, but the faces of the box are oth-
erwise impermeable to air, heat, and water. For a non-RCE
atmosphere, we may vent the walls of the box, forcing air
to enter or exit the sides of the box at each height. In general,
this will cause there to be a nonzero net vertical mass flux M
(kgm22 s21) at a range of heights in the box. The steady state of
such an atmosphere might appropriately be called radiative–
convective–advective equilibrium (RCAE), with ‘‘advective’’
referring to the net vertical advection of mass, momentum, and
energy.1 Since we control the ventilation on the sides of the
box, M at each height is a parameter that, like Q, may be
controlled externally.

Corresponding author: David M. Romps, romps@berkeley.edu

1Warren et al. (2020) have used the term RCDE with ‘‘D’’
standing for ‘‘dynamical.’’
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We will focus on solutions at a single height in an RCAE
atmosphere. Those solutions can be integrated numerically to
obtain full profiles within the box as in Romps (2014), but we
will not do so here. All of the points we wish to make in this
paper can be understood from studying the solutions at a single
height. Therefore, from here on, Q and M will refer to the
radiative heating and netmass flux at a chosen height in the box
with temperature T and pressure p.

To model the atmosphere within the box, we will use the
bulk-plume approximation. Borrowing from the notation of
Romps (2020), we will denote the upwardmass flux in clouds as
Mc and the upward mass flux in the environment as Me (note
that the value of Me will be negative). The net mass flux M is
equal to the sum of these:M5Mc 1Me. Using the notation of
Singh et al. (2019), wewill define r[2Me/Mc as the ratio of the
magnitudes of the descending environmental mass flux and the
ascending cloud mass flux [note that Me here is equal and op-
posite to the Md variable of Singh et al. (2019)].

To represent the convergence of air through the sides of the
box, we will denote the large-scale horizontal convergence of
mass by l (kgm23 s21). Then, the steady-state bulk-plume
equations for mass, water, and moist static energy (MSE) are
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Here, e and d (kgm23 s21) are the rates of entrainment and
detrainment, respectively. The mass fraction of water vapor in
the environment is qy (kg kg

21) and the mass fraction of water
vapor in the convection is qy*, with an asterisk to denote that
this is the saturated value. In these equations, we have used the
zero-buoyancy approximation, as introduced by Singh and
O’Gorman (2013) and used by Romps (2014); under this ap-
proximation, the small virtual effect is ignored and the tem-
peratures of the convection and environment are treated as
equal at the same height. MSE is represented in these equa-
tions by h (J kg21), with h5 cpT1 gz1 Lqy being the value in
the environment and h*5 cpT1 gz1Lqy* being the value
in the convection. Here, L is the latent heat of evaporation, cp
is the specific heat capacity of air at constant pressure, and g is
the gravitational acceleration. In Eq. (3), c is the condensation
rate (Wm23). Note that, in Eqs. (5) and (6), the radiative
heating rate Q (which will be negative to give cooling) is ap-
plied only to the environment since the clouds are assumed to
occupy a negligible fractional area; equivalently, clouds rise
too quickly for radiative cooling to be of any practical rele-
vance to their energy budget. Note also that horizontal

convergence has been included in these equations, but not
horizontal advection. Finally, we have simplified matters by
assuming a precipitation efficiency of one; i.e., condensates fall
out as rain without any evaporation in the environment. This
same simplification was used in sections 1–5 of Romps (2014)
and in section 2.3 of Singh et al. (2019).

Our first task is to derive an expression for the environ-
mental mass flux. The mathematical error of Singh et al. (2019)
was to assume that ‘‘the downward mass flux in the environ-
ment remains fixed at its RCE value irrespective of the upward
mass flux in the [convection],’’ an approximation that was
claimed to be ‘‘valid if it may be assumed that the down-
ward mass flux is set by a balance between radiative cooling
and subsidence in the environment and that the radiative
cooling rate itself is fixed.’’ To see why this is not a valid
assumption, we can subtract L times (4) from (6) and then
use (2) to obtain
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In the solution below, we will see that G varies from the dry
lapse rate to the moist lapse rate as the net mass flux is varied,
leading to dramatic variations in Me.

Equations (1)–(6) can be solved analytically in terms of M
and Q (and also the chosen p, T, e, and d) and the derivation
and solutions are given in the appendix. In RCE (i.e., M 5 0),
the cloud mass flux and condensation rate are
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where the constant C (constant in the sense that it does not
depend on M or Q) is defined in Eq. (A36). Note that both
Mc,RCE and cRCE are linear in the radiative heating rate Q
(which, as we recall, is negative). Note also that cRCE does not
depend at all on the rates of entrainment or detrainment; in the
absence of any large-scale flow, the condensation rate must
balance the radiative cooling. Figure 1 shows the dependence
of Mc,RCE and cRCE on the fractional entrainment rate (« [
e/Mc) and the fractional detrainment rate (d[ d/Mc). Figure 1
supplements Fig. 2 of Romps (2014), which plotted RHRCE

as a function of « and d.
For the general solution (i.e., for any net mass flux M), it is

helpful to define
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so that ~c is the condensation rate normalized by its RCE value,
and ~M, ~Mc, and ~Me are the net, cloud, and environmental mass
fluxes, respectively, all normalized by the cloud mass flux in
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RCE. We can also define the lapse rate G, the inverse of the
water-vapor-scale height g, and the relative humidity RH as
G 5 2›T/›z, g52› log(qy*)/›z, and RH5qy/qy*, respectively.
With these definitions, and assuming that RH varies over dis-
tances that are large compared to 1/g, we can then find analytic
solutions for RH, g, G, r, ~c, ~Mc, and ~Me as explicit functions of ~M
that do not depend on the radiative cooling rateQ. TheseRCAE
solutions are given in Eqs. (A37)–(A43) in the appendix.

3. Behavior of the solutions

The solutions are plotted in Fig. 2 for T 5 300K, p 5
100 kPa, and «5 d5 0.5 km21. BecauseQ has dropped out the
solutions, the variables plotted in Fig. 2 are functions only of
~M. To show the limiting behavior of the solutions, the abscissa
ranges over 210 to 10. Black circles mark the RCE values
at ~M5 0.

The limiting values of RH are
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In the limit of rapid ascent, we see that the column becomes
saturated (RH 5 1). In RCE (i.e., ~M5 0), the relative hu-
midity takes an intermediate value derived previously by
Romps (2014). In the limit of rapid descent, the relative hu-
midity asymptotes not to zero but to a finite value that is
nonnegative so long as «$ «0. For p5 100 kPa and T5 300K,
«0 5 0.46 km21; for « greater than this value (e.g., the value of
0.5 km21 used in Fig. 2), the solution remains physical for all
values of ~M.

The limiting values of the lapse rate are

G5

8
>>>>>>>>><

>>>>>>>>>:

g

!
11

q
y
*L

R
a
T

"

c
p
1

q
y
*L2

R
y
T2

~M5‘

g

c
p

~M52‘

. (16)

In the limit of rapid ascent, the lapse rate equals the moist
adiabat. In RCE, the lapse rate takes an intermediate value
derived by Romps (2014). In the limit of rapid descent, the
lapse rate asymptotes to a dry adiabat.

The limiting values of the condensation rate are
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In the limit of rapid ascent, the condensation rate tends to in-
finity. In RCE, ~c5 1. In the limit of rapid descent, the con-
densation rate asymptotes not to zero but to a finite value
that is nonnegative so long as « $ «0. Recalling that the lapse
rate equals the dry adiabat in the rapid-descent limit, it may
sound odd that there could be nonzero condensation in that
limit. This apparent contradiction (precipitating dry-adiabatic
clouds) is resolved by noting that the cloud mass flux tends to
infinity in this limit. Therefore, the condensation rate per unit
of cloud mass flux can go to zero while maintaining a finite
domain-wide condensation rate.

Figure 3 plots the solutions for five different values of « (0.1,
0.2, 0.5, 1, and 2 km21) with d 5 « in all cases. The green curves
are the same as in Fig. 2. Note that the abscissa in Fig. 3 ranges
from22 to 2 instead of210 to 10. In the sections that follow, let
us refer to these solutions as the zero-buoyancy solutions. This
terminology emphasizes the solutions’ defining characteristic:

FIG. 1. For RCE (i.e., ~M5 0) at T 5 300K and p 5 100 kPa with Q 5 0.01Wm23, (left) cloud mass flux and
(right) condensation rate, both as functions of the fractional rates of entrainment and detrainment. The conden-
sation rate is plotted here to emphasize that it is independent of the entrainment and detrainment rates; in RCE, it
must balance the radiative cooling.

FEBRUARY 2021 ROMPS 499



given M and Q, the solutions give the state of the atmosphere
that would be consistent with zero-buoyancy convection.

4. Do the solutions explain tropical variability?

A series of papers (Singh and O’Gorman 2013; Singh et al.
2017, 2019) claimed to show that the zero-buoyancy solutions
are useful for understanding the covariation of RH, CAPE,
and precipitation in the tropics. Sections 4a and 4b will re-
examine the proffered evidence. Section 4c will explain that
the zero-buoyancy solutions fail as a model for tropical vari-
ability because they neglect the gravity waves that enforce the
tropic’s weak temperature gradient (WTG).

a. Variability of CAPE

Singh and O’Gorman (2013) looked at soundings from the
tropical Pacific warm pool (their Fig. 3) and found that high
RH and high CAPE do not coexist. The proposed explanation
was based on the zero-buoyancy solutions: high RH causes a
low lapse rate, i.e., high stability and, therefore, low CAPE.
But this explanation would produce spatial variations in the
lapse rate that are incompatible with WTG. Very roughly,
using a gravitational acceleration of 10m s22, a mean tropo-
spheric temperature of 250K, and a tropospheric depth of
104m, each 1K of virtual temperature anomaly adds;400 J of
additional CAPE (10 3 104/250 5 400). Singh and O’Gorman

(2013) interpreted their Fig. 3 as showing that variations in RH
cause variations in CAPE ranging from 0 to 1500 J. That would
imply horizontal variations in tropospheric temperature of
;4K, which is incompatible with the observed variations of
;1K (see section 4c). Instead, high RH and high CAPE are
rarely found together because such a state would be highly
unstable. If the high CAPE were caused by high boundary
layer entropy, then the entraining convection would thrive in
the high-RH troposphere and would reduce RH, CAPE, or
both. If the high CAPE were caused by an especially cold
troposphere, then gravity waves would act to heat the column,
thereby reducing CAPE and enforcing WTG.

Singh et al. (2017) looked at all available soundings from
368S to 368N and found that conditionally averaged CAPE
roughly doubles as the lower-tropospheric saturation deficit
grows from zero to its median value (their Fig. 3 and Fig. S5).
Again, the explanation for this was based on the zero-buoyancy
solutions: a higher saturation deficit causes a higher lapse rate
and, therefore, higher CAPE. Figure 4a in this paper plots the
conditionally averaged CAPE (red squares) as a function of
saturation deficit using the same data and, to the extent repli-
cable, the same methods. As in Singh et al. (2017), CAPE
roughly doubles as the saturation deficit increases from zero to
its median value. Note, however, that this does not showCAPE
varying with saturation deficit with all else equal. By looking at
368S to 368N, this has included soundings from places that are

FIG. 2. Solutions from Eqs. (A37)–(A43) with p5 100 kPa, T5 300K, and «5 d5 0.5 km21. Circles denote values in RCE, i.e., at ~M5 0.
Dashed lines in the plot of lapse rate mark the moist and dry adiabats.
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in no way tropical (e.g., Oklahoma City and Gwangju, South
Korea, whose average lows are below freezing in winter).
Indeed, if we plot conditionally averaged temperature as a
function of saturation deficit (blue plusses), we see that the
low CAPE at low saturation deficit is caused, in large part, by

the inclusion of cold nontropical soundings. Instead, if we
restrict to 158S to 158N, the conditionally averaged surface
air temperature varies over less than 2K and the condition-
ally averaged CAPE behaves as shown in the red squares
of Fig. 4b.

FIG. 4. (a) For soundings between 368S and 368N, conditionally averaged CAPE (red squares) and surface air
temperature (blue plus signs) as functions of the lower-tropospheric saturation deficit. (b) For soundings between
158S and 158N, conditionally averaged CAPE (red squares), lifted-parcel density anomaly r2 r̂s at 50 kPa (green
circles), r2 r̂s at 50 kPa (purple triangles), and r2 r̂s at 50 kPa (orange diamonds).

FIG. 3. As in Fig. 2, but with « 5 d ranging from 0.1 to 2 km21. Diamonds mark the RH 5 0 solutions in cases where « , «0.
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What causes the unimodal shape of CAPE in Fig. 4b? To
find out, let us denote the density of a lifted surface air parcel as
r̂s, which is a function of the isobar to which it is lifted, and let
us write the environmental density as r, also a function of
isobar. Their difference (r2 r̂s) evaluated at 50 kPa is plotted
in green circles, and we see that this density anomaly is an
excellent proxy for CAPE. Using a bar to denote an un-
conditional average over all soundings, we can figure out
what causes the variation in CAPE by also plotting r2 r̂s
(purple triangles) and r2 r̂s (orange diamonds). These
show that the variation in CAPE is entirely explained
by variations in surface air entropy, with virtually zero
contribution from variations in free-tropospheric density
or, equivalently, free-tropospheric virtual temperature.
Contrary to the prediction of the zero-buoyancy solutions,
the local saturation deficit does not control the local free-
tropospheric temperature.

b. Variability of precipitation

Singh et al. (2019) found that the precipitation rate (i.e.,
condensation rate) goes to zero at a critical relative humidity
RHmin in their zero-buoyancy solutions [see their Eq. (15)].
Noting that precipitation relates nonlinearly with RH in the
tropics, this was cited as evidence for the usefulness of the zero-
buoyancy solutions in understanding the covariation of tropical
RH and precipitation. As mentioned earlier, however, Singh
et al. (2019) made a mathematical error in their derivation.
One clue that something is awry with their solutions is that
their sensitivity to relative humidity is extreme. By Eq. (15)
of Singh et al. (2019), the difference between their minimum
relative humidity (RHmin, at which precipitation turns on)
and the RCE relative humidity (RHRCE, at ~M5 0) is
(RHRCE 2 1)2/RHRCE. For RHRCE 5 0.83 as in Singh et al.
(2019), this implies that precipitation shuts off if the relative
humidity drops from its RCE value by only 3%, implying

that RCE sits on the knife’s edge, just barely able to
precipitate.

This behavior, however, is spurious: with the correct solu-
tions derived here, we can see that there is no such behavior.
The general solution for ~c, given by Eqs. (A40) and (A41), tells
us that

~c5
(A2BRH)RH

d(12RH)
, (18)

where A and B are defined in Eqs. (A28) and (A29) in the
appendix. Since A . B . 0, this tells us that the condensation
rate is positive for all positive values of RH. This relationship
between condensation and relative humidity is plotted as the
solid curve in Fig. 5a using «5 d5 1.5 km21 to match the RCE
RH of 0.83 in Fig. 1 of Singh et al. (2019). Around RCE, the
solution of Singh et al. (2019) gives a precipitation rate that
varies with relative humidity more than 10 times too rapidly.
And, in the correct solution, there is no special RH at which the
condensation rate suddenly turns on.

It is tempting to look at the correct solution in Fig. 5a and
conclude that the convection shuts off at a relative humidity
of 0.69, but that would be wrong. In the zero-buoyancy
solutions, relative humidity is not an independent variable:
instead, it is set internally by the interplay between convection
and its environment. The external control is the mean ascent
rate ~M, and both the relative humidity and the condensation
rate asymptotically approach finite values as ~M goes to
negative infinity. Thus, while it is fine tomakeplots like Fig. 5a, it
must be understood that relative humidity is not ‘‘controlling’’
the condensation rate, the lapse rate, or CAPE any more than
the reverse is true. Figure 5b plots the condensation rate as a
function of the independent variable ~M, which shows that the
correct solution continues to have ~c$ 0:69 no matter what the
value of ~M is. In other words, as a model for tropical variability,

FIG. 5. (a) Normalized condensation rate ~c plotted against relative humidity for the correct solution given by
Eq. (18) (solid) and Eq. (15) (dashed) of Singh et al. (2019). For both curves, p5 100 kPa, T5 300K, and «5 d5
1.5 km21 to match the RCE relative humidity of 83% as in Fig. 1 of Singh et al. (2019). The circle marks the RCE
solution and the square marks the solution with infinite mean descent. (b) As in (a), but with ~c plotted against ~M.
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these solutions would predict that everywhere in the tropics
precipitates at a rate at least 69% as high as RCE. The real
tropics are not like this at all.

c. Why the solutions fail as a model of variability

We have seen that the zero-buoyancy solutions fail to ex-
plain the tropical covariation of RH, CAPE, and precipitation.
The fundamental reason for this failure is that these solutions
are for an atmosphere in a box decoupled from its surround-
ings: that atmosphere in a box does not feel or adjust to the
lapse rate of neighboring patches of atmosphere, thereby vio-
lating the tropical WTG.

In fact, the bulk-plume solutions violate WTG in a rather
spectacular fashion. From the solution for G in Eq. (A39), we
learn that the lapse rate G is linear in RH. In particular,
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With the same parameters used for Fig. 2 (p 5 100 kPa, T 5
300K, «5 d5 0.5 km21), this gives26.5K km21, whichmeans,
e.g., that a change in RH by 50% (e.g., from 50% to 100%)
reduces the lapse rate by 3.3K km21. Integrated over the scale
height of water vapor 1/g (’4.4 km), this would lead to a
temperature difference of’14K at a height of 5 km between a
patch of saturated atmosphere and a patch of atmosphere
with a relative humidity of 50%. In the tropics, such large
temperature variations are unrealizable due to efficient gravity
waves, which maintain a weak temperature gradient. Using the
Integrated Global Radiosonde Archive (IGRA) database
(Durre et al. 2006) and restricting to soundings in the deep
tropics (158S to 158N), where planetary rotation is small, the
interquartile range of temperature at 5 km is only 1.6 K. (No
effort has been made here to detrend the sounding data for the
effect of global warming, so this interquartile range, impres-
sively small already, is biased high.) Repeating this analysis
with radiosonde data from the U.S. Department of Energy
(DOE)Atmospheric RadiationMeasurement (ARM) tropical
western Pacific (TWP; Mather et al. 1998) sites in Darwin,
Manus, and Nauru from 2001 to 2015, the interquartile ranges
for the temperature and virtual temperature at 5 km are found
to be 1.4 and 1.3K, respectively, confirming the near absence of
temperature variation.

Not only is WTG obeyed in the tropics, but the small tem-
perature variations have no meaningful correlation with the
relative humidity, as we saw in Fig. 4b. To illustrate this in
another way, Fig. 6 shows the virtual temperature at 5 km in the
deep tropics plotted at 10 percentiles (5th through 95th) of
the relative humidity of the lower troposphere (defined as the
mean of the relative humidities at the 85-, 70-, and 50-kPa
levels, weighted by their saturation specific humidity). At
each relative humidity, the median and interquartile range of
the 5-km virtual temperature is plotted. Note that the mid-
tropospheric virtual temperature does not vary with lower-
tropospheric humidity.

Also shown in Fig. 6 are the predictions for those tem-
peratures if the 5-km temperature were controlled by local

convection, as is assumed in the zero-buoyancy solutions. For
the purposes of illustration, we will take the lapse rate pre-
dicted by Eq. (A39) (using the mean observed properties at
the standard pressure level of 70 kPa), multiply that lapse rate
by 5 km, and subtract that from 300K to predict the tem-
perature at a height of 5 km. As mentioned earlier, the ob-
served surface air temperature varies by less than 2K when
conditionally averaged on saturation deficit, so measuring the
temperature at 5 km is tantamount to measuring the inte-
grated lapse rate up to that height. The results are plotted in
Fig. 6 for three different entrainment rates, with d set to « in
each case. For all of the model solutions, the slope of T(5 km)
versus RH is entirely inconsistent with the observations.

What we can infer from Fig. 6 is that the tropics have a lapse
rate that is everywhere consistent with an ascending zero-
buoyancy solution with a relative humidity of ;0.8 and an
entrainment rate of;0.5 km21. This roughly matches what we
know: tropical precipitation occurs mostly in regions with
lower-tropospheric relative humidity in the range of 0.7–0.8
(Bretherton et al. 2004) and large-eddy simulations find that
the mean lower-tropospheric bulk-plume entrainment rate for
tropical deep convection is in the ballpark of 0.5 km21 (e.g.,
Romps 2010).

To reiterate, the zero-buoyancy bulk-plume solutions fail
as a model of the covariation of tropical RH, CAPE, and
precipitation because they assume that the lapse rate is set
locally. In reality, the lapse rate of a patch of tropical atmo-
sphere is predominantly controlled by an appropriate average

FIG. 6. A comparison of the dependence of the 5-km tempera-
ture on the lower-tropospheric humidity as (lines) predicted by the
zero-buoyancy bulk-plume model for three different fractional
entrainment rates with d 5 « and (circles) observed in the deep
tropics. Circles give the median virtual temperature at 5 km at each
of 10 percentiles (5th through 95th) of lower-tropospheric relative
humidity. Whiskers show the interquartile range. Lines show the
bulk-plume prediction from Eq. (A39).
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of moist convection throughout the tropics, not by the con-
vection (if any) that is local to the patch.2 The value of the
zero-buoyancy solutions is not that they explain variance in the
tropics, but that they can tell us about the mean RH, CAPE,
and precipitation rate of the deeply convecting regions and the
mean lapse rate that they impart to the whole tropics.

5. The aggregated state

According to this interpretation, the deep tropics provides
only a single realization of a zero-buoyancy solution. To pro-
vide additional checks of the theory, we can turn to numerical
simulations. Here, we will see if the theory can predict the
properties of the convectively aggregated state.

To build a toy model for the aggregated state, we can stitch
together a zero-buoyancy ascending solutionwith a nonconvecting
dry patch. A steady-state descending column does not have deep
convection because its lapse rate is set by ascending convecting
regions elsewhere, and that lapse rate is smaller than is required
for a zero-buoyancy solution withM, 0. For such dry patches, we
can set G to the value from the convecting regions. For the mean
relative humidity of the dry patch, wewill simply approximate it as
zero as would be appropriate for a circulation that converges air
into the dry patch in the upper troposphere; the results below can
be generalized easily to a dry-patch relative humidity that is some
nonzero fraction of the moist patch’s relative humidity. The envi-
ronment descends in this nonconvecting region at the same speed
as in the convecting region, as given by Eq. (7).

If the convecting region occupies a fraction f of the domain,
then mass conservation requires

(12 f )M
e
1 fM5 0. (20)

Rearranging, we find that

f 52
M

e

M
c

. (21)

From Eq. (A41) in the appendix, 2Me/Mc 5 ~c, so

~c5
1

f
. (22)

Since there is no condensation in the dry patch, the normalized
domain-mean condensation rate ~cave is equal to f ~c, which,
combined with (22), gives

~cave 5 1 . (23)

Equations (22) and (23) tell us that the radiative cooling
throughout the domain is balanced by the latent heating in the
convecting portion of the domain.

Next, combining (21) with (A40) in the appendix, the rela-
tive humidity in the convecting region is found to be

RH5
d1 fA2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d1 fA)2 2 4fBd

q

2fB
, (24)

where A and B are given by Eqs. (A28) and (A29) in the
appendix. Using our approximation of qy 5 0 in the non-
convecting region, the domain-mean relative humidity is simply

RH
ave

5 f RH . (25)

Finally, to get an expression for G in terms of f, we can combine
(24) with (A39) in the appendix to get

G5
R

y
T2

L

0

@2d1 fA1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d1 fA)2 2 4fBd

q

2f
1

g

R
a
T

1

A . (26)

Figure 7 plots RH and RHave (left panel), the lapse rate
(middle panel), and the condensation rates (right panel) as
functions of f for five different entrainment rates. The RCE
case corresponds to f 5 1, where convection is uniformly dis-
tributed through the entire domain. As f decreases, the con-
vection is aggregated into a fraction f of the domain.

As the convection aggregates, the relative humidity in the
convecting patch increases while the domain-mean relative
humidity decreases, a behavior that is found in numerical
simulations (Held et al. 1993; Bretherton et al. 2005;Wing et al.
2017). We can understand this behavior as follows: RH in the
convecting patch goes to one as f goes to zero because the
convection is increasingly concentrated in a smaller area,
causing detrainment moistening to overwhelm subsidence
drying there. While the convecting patch approaches satura-
tion as it contracts, the domain-mean relative humidity is given
by fRH, which, in the limit of small f, simply equals f.

We also see that the lapse rate decreases as the atmosphere
aggregates; this, too, is found in numerical simulations of
convective aggregation (Held et al. 1993; Wing and Cronin
2016; Wing et al. 2017; Becker et al. 2018). We can understand
this by noting that RH approaches one as the convecting patch
contracts to zero size, for the reason just noted. As RH ap-
proaches unity, the effect of entrainment vanishes, so the lapse
rate asymptotically approaches a moist adiabat.

Finally, as the convection aggregates, the fixed rate of
domain-mean condensation occurs in a smaller area, causing ~c
to increase. This is a robust feature of every numerical simu-
lation of convective aggregation, reflected in the very high
precipitation rate in the convecting patch. In this toy model,Q
is held fixed, so the domain-mean condensation rate does not
change with aggregation. In models with interactive radiation,
the redistribution of water vapor and clouds can alter the net
radiative cooling of the troposphere, leading to small fractional
changes in the domain-mean precipitation rate [e.g., the&10%
decrease seen by Held et al. (1993)].

6. Summary

Using a zero-buoyancy bulk-plume model of a convecting
atmosphere, analytic solutions have been derived for the

2 Note the key word ‘‘predominantly.’’ Of course, local convec-
tion does have some influence on the local temperature, and the
resulting small temperature variations are essential to establishing
large-scale circulations. But gravity waves are so efficient that
circulations can be established with only small deviations from the
tropical mean temperature profile.
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relative humidity, lapse rate, condensation rate, cloud mass
flux, and environmental mass flux as functions of the pressure,
temperature, fractional rates of entrainment and detrainment,
radiative cooling, and the net mass flux (or, instead of the net
mass flux, the fraction of the domain that is deeply convecting).
This extends the solutions in Romps (2014) to nonzero net
vertical mass flux (see Fig. 3). As in Romps (2014), these so-
lutions can be integrated numerically in the vertical to produce
full atmospheric profiles, although that has not been done here.

Several papers (Singh andO’Gorman 2013; Singh et al. 2017,
2019) have argued that the zero-buoyancy solutions can ex-
plain much of the covariation of RH, CAPE, and precipi-
tation in the tropics. As argued in section 4, the evidence
does not support this claim and, further, the idea is incom-
patible with the tropics’ weak temperature gradient (WTG;
see Fig. 6). Instead, it is appropriate to use an ascending
zero-buoyancy solution to describe the mean properties
(RH, CAPE, lapse rate, and precipitation rate) of tropical
regions that are deeply convecting and, thanks to efficient
gravity waves, the thermal structure of the free troposphere
throughout the tropics.

In section 5, we constructed an aggregated state by stitching
together an ascending and convecting patch of atmosphere to a
descending and nonconvecting patch of atmosphere using the
WTG approximation. As the convection aggregates, the rela-
tive humidity and precipitation rate increase in the ascending
region, the domain-mean relative humidity decreases, the
domain-mean precipitation stays the same (assuming a fixed
radiative cooling rate), and the lapse rate decreases (see Fig. 7).
These behaviors match what has been found in cloud-resolving
simulations of convective aggregation, bolstering the notion
that these zero-buoyancy solutions are an appropriate toy
model for the mean properties of convecting regions.
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APPENDIX

Zero-Buoyancy Solutions

To solve Eqs. (1)–(6), we will first derive expressions for the
condensation rate and the relative humidity.With the aid of (1)
and (2), we can write (3)–(6) as

M
c

›

›z
q
y
*5 e(q

y
2q

y
*)2 c , (A1)

M
e

›

›z
q
y
5d(q

y
*2q

y
) , (A2)

M
c

›

›z
h*5 e(h2 h*), (A3)

M
e

›

›z
h5d(h*2 h)1Q . (A4)

Following Romps (2014), these can be simplified by intro-
ducing g defined as g[2› log(qy*)/›z, the relative humidity
defined as RH[ qy/qy*, and the fractional entrainment and
detrainment rates defined as « [ e/Mc and d [ d/Mc, re-
spectively. Written in terms of these variables, Eq. (A1) be-
comes an expression for the condensation rate,

c5 [g2 «(12RH)]M
c
q
y
*. (A5)

FIG. 7. (left) As a function of the fraction f of the domain that is convecting, RH in the convecting fraction of the domain (solid) and the
domain-mean RH plotted for five different fractional entrainment rates (dashed). (center) The lapse rate as a function of f for the five
different entrainment rates. The dashed lines mark the dry andmoist adiabats. (right) The normalized condensation rate in the convecting
region (~c; solid) and averaged throughout the domain (~cave; dashed). The curves are colored black here because the condensation rates,
expressed as functions of f, are independent of the entrainment rate.
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Since all condensates are assumed to fall out of the atmosphere
immediately upon formation, c represents the generation of
precipitation. Next, using the fact that qy 5RHqy*, applying the
definitions of g, d, and r [ 2Me/Mc, and ignoring the small
fractional vertical variations in RH, Eq. (A2) can be rewritten
as an expression for RH,

RH5
d

d1 rg
. (A6)

As noted by Singh et al. (2019), this expression for RH
generalizes the expression obtained by Romps (2014) to
non-RCE cases (i.e., r 6¼ 1). But Eq. (A5) for the conden-
sation rate and Eq. (A6) for the relative humidity both de-
pend on the unknown g, so our derivation is not yet
complete.

As shown by Romps (2014), g (defined as 2› logqy
*/›z) is

related to the lapse rate G (defined as 2›T/›z) by

g5
LG
R

y
T2

2
g

R
a
T
, (A7)

where Ry and Ra are the specific gas constants of water vapor
and dry air, respectively. Next, consider the definitional
equation for h*, which is h*5 cpT1Lq

y
*1 gz. Taking ›/›z of

this definitional equation and then using Eq. (A7) to rewrite
g in terms of G, we get
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Another expression for ›h*/›z canbe obtainedby dividing (A3) by
Mc and using the fact that h2h*5L(qy 2qy*)5L(RH2 1)qy*.
This gives

›h*

›z
5 «L(RH2 1)q

y
*. (A9)

Equating the right-hand sides of Eqs. (A8) and (A9)
produces
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. (A10)

This expression for G is valid in the zero-buoyancy approxi-
mation for RCE and non-RCE atmospheres alike. Note that it
is a linear function of RH. Using (A7), we can obtain from
this a similar expression for g:

g5A2BRH, (A11)

where A and B are constants given below.

Our penultimate task is to find a relationship between
Q, r, and c. Multiplying (A1) by r and adding it to (A2),
and likewise multiplying (A3) by r and adding it to (A4),
we get
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Multiplying (A12) by L and replacing h2 h* with L(qy 2 q
y
*)

in (A13), we get
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Subtracting (A14) from (A15), we are left with

c52
Q

rL
. (A16)

For a given Q, c is inversely proportional to r.

We are now ready to solve the system of Eqs. (1)–(6). Using
(A11) in (A6) and solving for r, we get

r5
d/RH2 d

A2BRH
. (A17)

Taking one minus (A17) and dividing by (A17), we get

12 r

r
5

2BRH2 1 (A1 d)RH2 d

d(12RH)
. (A18)

Next, we can use (A11) and Mc 5 M/(1 2 r) to write (A5) as

c5 [A2BRH2 «(12RH)]
M

12 r
q
y
*. (A19)

Using (A16) to replace c in (A19) andmultiplying both sides by
1 2 r, we get

12 r

r
52

MLq

Q
y* [A2BRH2 «(12RH)]. (A20)

Equating the right-hand sides of (A18) and (A20) gives a
quadratic equation for RH in terms of constants (T, p, «, d),
thermodynamic functions of those constants (qy* and L), and
control parameters (Q and M).

Altogether, the solution for the state of the atmosphere is
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where the constants A, B, b1, b2, and b3 are defined as
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We can simplify these solutions further by removing any ex-
plicit dependence onQ. In RCE,M5 0 and the expression for
RH simplifies to

RHRCE 5
A1 d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(A1 d)2 2 4Bd

q

2B
. (A33)

UsingEqs. (A5), (A11), and (A16), and using the fact that r5 1
in RCE, we can derive expressions for Mc,RCE and cRCE,
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Using (10)–(13), which normalize the condensation rate and
mass fluxes by RCE values, we can write Eqs. (A21)–(A27) as
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with variables
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This has eliminated Q from the solution.
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