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ABSTRACT: The radiative forcing from carbon dioxide is approximately logarithmic in its concentration, producing
about 4 W m22 of global-mean forcing for each doubling. Although these are basic facts of climate science, competing
explanations for them have been given in the literature. Here, the reasons for the logarithmic forcing of carbon dioxide are
explored in detail and a simplified model for the forcing is constructed. An essential component is the particular distribu-
tion of absorption coefficients within the 15-mm band of carbon dioxide. An alternative explanation, which does not
depend on the spectrum of carbon dioxide but instead hinges on the tropospheric lapse rate, is shown to be neither neces-
sary nor sufficient to explain the logarithmic forcing of carbon dioxide and to be generally inapplicable to well-mixed
greenhouse gases in Earth’s atmosphere.
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1. Introduction

It is well known that the radiative forcing from carbon diox-
ide is approximately logarithmic in its concentration, produc-
ing about 4 W m22 of additional global-mean forcing for
every doubling. There are, however, two different explana-
tions in the literature for this logarithmic dependence. Given
the dominant role that CO2 plays in global warming, this
mechanistic uncertainty merits resolution.

Perhaps the most widely accepted explanation is that the
logarithmic behavior stems from the particular absorption
spectrum of CO2 (Pierrehumbert 2010, 2011; Wilson and
Gea-Banacloche 2012; Jeevanjee et al. 2021). Many absorp-
tion bands of greenhouse gases can be approximated with an
absorption coefficient k (m2 mol21) that decays exponentially
from the band center as a function of frequency or wavenum-
ber (Edwards and Menard 1964a,b) and the 15-mm band1 of
carbon dioxide is a particularly good example of this (Crisp
et al. 1986). Heuristic arguments have been given as to why
this would lead to a logarithmic forcing (Pierrehumbert 2010,
2011) and analytic calculations have even succeeded in re-
producing the ≈4 W m22 of forcing from a doubling of CO2

(Wilson and Gea-Banacloche 2012; Jeevanjee et al. 2021).
Notably, this explanation does not depend on the value or
even existence of a tropospheric lapse rate.

The competing explanation is what we might call the
“lapse-rate theory,” which posits that the forcing stems from
the troposphere’s lapse rate (Sloan and Wolfendale 2013;
Huang and Bani Shahabadi 2014; North and Kim 2017). In
brief, the lapse-rate theory states that the emission-to-space
heights of individual wavenumbers move upward in the tropo-
sphere (to lower temperature) a distance that is proportional
to the logarithm of the gas concentration, thereby generating
a forcing that scales as the log of the concentration. Critically,
this theory predicts that the forcing is proportional to the tro-
pospheric lapse rate. Notably, this explanation does not
require the absorption coefficients to be distributed logarith-
mically or in any other special way. We will see that the lapse-
rate theory is neither necessary nor sufficient to explain the
logarithmic forcing of carbon dioxide (see section 9) and that
it generally cannot hold for a well-mixed greenhouse gas in
Earth’s atmosphere (see section 10).

The aim of this paper is to set the explanation of
Pierrehumbert (2010, see his Fig. 4.12) on a firm foundation
by demonstrating the properties that lead to carbon dioxide’s
logarithmic forcing, building a simplified analytic model to
showcase the underlying processes, and showing that a line-
by-line radiative transfer model gives a logarithmic forcing
for the same reasons. This will occupy the bulk of paper,
from sections 5 to 8. The reader who wants to quickly learn
the basic mechanism may be satisfied with the overview in
section 3 and could skip ahead to that section now.

2. Preliminaries

To reduce the problem to its essential elements, we will
focus on the instantaneous top-of-atmosphere (TOA) forcing
in dry atmospheres. These simplifications (TOA and dry) are
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1 To be precise, the 15-mm band is actually a collection of vibra-
tional bands and so is sometimes called a “band of bands” or a
“band system.” The strongest bands within the 15-mm band are
generated by transitions between the vibrational ground state and
the first mode of bending, between the first mode of bending
and the first mode of symmetric stretching, and between the first
and second modes of bending (Kiehl and Ramanathan 1983).
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acceptable because the logarithmic scaling of the CO2 forcing
does not depend on these choices. Figure 1 illustrates this
point using radiative-transfer calculations in a three-dimensional
snapshot from a cloud-resolving simulation of a tropical atmo-
sphere.2 Figure 1a shows, plotted as circles, the total, instanta-
neous, tropopause, longwave forcing from carbon dioxide
(averaged over the domain of this snapshot) as a function of
the carbon dioxide concentration; the best-fit line is overlaid
to emphasize the linearity.

Here and throughout, we will use the variable F to denote
an instantaneous longwave forcing, which has dimensions of
power per area and whose typically positive values indicate a
net downwelling flux of radiative energy. With the exception
of Fig. 1a, all forcings discussed in this paper will be calculated
at the top of the atmosphere. We will dress F with various
subscripts and superscripts to clarify what type of forcing is
being used. For example, F tot(q) will be the total forcing from
the presence of a well-mixed greenhouse gas at a volume frac-
tion of q. In particular, Ftot(q) is the TOA upwelling longwave
flux with the greenhouse gas removed minus the TOA upwell-
ing longwave flux with the greenhouse gas’s volume fraction
set to q. In later sections, we will also discuss F23(q) ≡
F tot(2q) 2 Ftot(q), which is the forcing from a doubling of the
gas concentration.

From the linearity of the data on the logarithmic axis of
Fig. 1a, we see that the all-sky forcing from CO2 at the tro-
popause is logarithmic in its concentration to good appro-
ximation over a wide range of concentrations (i.e., the
10 doublings shown here). The instantaneous tropopause forcing
is considered a better proxy for the stratosphere-adjusted
forcing than the instantaneous top-of-atmosphere forcing
(Hansen et al. 1997), but the logarithmic scaling is preserved
in the TOA forcing as shown in Fig. 1b. Of the two forcings,
the TOA forcing is easier to conceptualize because it only
involves upwelling fluxes; therefore, the focus of this paper
will be on the TOA forcing. In Fig. 1c, the clouds in the snap-
shot have been made transparent to infrared radiation, but
this does not alter the logarithmic dependence. In Fig. 1d, the
water vapor in the snapshot is also made transparent to radia-
tion; again the logarithmic dependence remains. We see,
therefore, that the logarithmic dependence of the CO2 forcing
is a phenomenon that does not depend on the presence of
water vapor or clouds, or on whether the forcing is measured

at the tropopause or TOA. Therefore, in the sections that fol-
low, all forcings will be calculated at the top of the atmo-
sphere and we will work exclusively with dry atmospheres.
For an extension to moist atmospheres, see Jeevanjee et al.
(2021).

To probe the mechanism of the logarithmic dependence,
we will use a line-by-line radiative transfer model. Although
the logarithmic dependence is robust across radiative transfer
models, a line-by-line model provides spectral fluxes that are
straightforward to interpret. The line-by-line model used here
is the Reference Forward Model (RFM; Dudhia 2017), which
we use with the HITRAN2016 spectroscopic database
(Gordon et al. 2017) and flags MIX, CHI, and CTM to imple-
ment the line-mixing model of Strow et al. (1994), to apply
the line-shape correction x factor (Le Doucen et al. 1985;
Cousin et al. 1985), and to include the CO2 continuum. Here,
and throughout the paper, air is defined to be 21% oxygen by
volume with the remaining fraction apportioned among nitro-
gen and carbon dioxide. Nitrogen and oxygen are treated as
transparent to infrared radiation. Since shortwave absorption
by CO2 alters its forcing by only about 4% (Myhre et al. 1998;
Etminan et al. 2016), shortwave fluxes are ignored here for
simplicity. Unless otherwise specified, the RFM is used with a
vertical spacing of Dlog10(p) = 0.05 and wavenumbers are
sampled at a spacing of 0.01 cm21.

We focus here on the 15-mm band of CO2 because it is the
source of the vast majority of the forcing from CO2 at modern
atmospheric concentrations (Augustsson and Ramanathan
1977; Zhong and Haigh 2013; Mlynczak et al. 2016), as can be
seen by comparing the top and middle panels of Fig. 2. One
of the reasons the 15-mm band dominates the forcing is
because the Planck distribution peaks near 15 mm at terres-
trial temperatures. The bottom panel of Fig. 2 shows the
Planck distribution for two different temperatures. The
Planck distribution B (W m22 sr21 cm; emitted radiance per
wavenumber interval) is defined as

B ñ,T( ) � 2hñ3c2

ehcñ=kBT 2 1
,

where ñ is the standard notation for wavenumber (the inverse
of wavelength). With this definition, pB ñ,T( )dñ is the power
per area of photons emitted by a blackbody surface with
wavenumbers between ñ and ñ 1 dñ.

The middle panel of Fig. 2 shows the carbon dioxide
absorption coefficient k calculated at a temperature of 289 K
and a total atmospheric pressure of 105 Pa (1 bar). The 15-mm
band, centered at 15 mm (667 cm21) and defined here to be
the wavenumbers between 467 and 867 cm21, is a prominent
feature in the absorption spectrum of carbon dioxide, which is
another reason why this band dominates its forcing. At the
very center of the band (around 667 cm21), a meter of dry
surface air with today’s CO2 concentration is virtually opaque;
at the wings of the band, an entire dry atmospheric column is
virtually transparent.

When talking about spectral forcings, we will put a sub-
script ñ on the forcing variable (e.g., Ftot

ñ or F23
ñ ) to denote

that it is the forcing per wavenumber interval. In particular,

2 The cloud-resolving model used for Fig. 1 was Das Atmos-
phärische Modell (DAM; Romps 2008), which was run to radia-
tive-convective equilibrium (RCE) over a 300-K ocean. In the
snapshot from this simulation, the total cloud cover is 35%: look-
ing down from space, 12% of the domain is covered by warm
cloud tops (.273.15 K) and 23% by cold cloud tops. The simula-
tion used the Rapid Radiative Transfer Model for general circula-
tion models radiation scheme (RRTMG; Iacono et al. 2008) and a
preindustrial CO2 concentration of 280 parts per million by vol-
ume (ppmv). With this CO2 concentration and radiation scheme,
the brightness temperature of the top-of-atmosphere (TOA)
upwelling longwave varies spatially from a minimum of 210 K
over cumulonimbus anvil clouds to a maximum of 264 K in clear
sky (which is far from the surface temperature due, in large part,
to the high precipitable water content of this tropical atmosphere).
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F23
ñ ñ,q( )dñ is the contribution to F23(q) from wavenumbers

in ñ, ñ 1 dñ[ ]. The top panel of Fig. 2 plots F23
ñ ñ, 256ppmv( )

for carbon dioxide (calculated with the line-by-line model) in
an idealized atmosphere that we will refer to as IsoStrat
because the stratosphere is isothermal. All line-by-line calcu-
lations were performed using concentrations that are a power
of 2 in parts per million by volume, so 256 ppmv is used
here as the closest representative of a preindustrial value of
∼280 ppmv. The IsoStrat atmosphere has a 289-K blackbody
surface overlain by a troposphere whose temperature drops
from 289 K at the 105-Pa surface to 205 K at the 104-Pa tropo-
pause, which is overlain by a 205-K isothermal stratosphere
(see section 4 for a precise definition of IsoStrat and the other
atmospheres used in this paper). Since this paper focuses on
instantaneous forcings, the model atmospheres used here are

static (i.e., they are independent of the greenhouse gas con-
centrations). As seen from Fig. 2, F23 from CO2 at modern
concentrations is almost entirely due to changes in upwelling
longwave fluxes in the 15-mm band, so that is where we will
focus our attention in the sections that follow.

3. The basic mechanism

Consider an atmosphere with a single well-mixed longwave
absorber with a volume fraction q and an absorption coeffi-
cient k that depends on wavenumber. Ignoring the pressure
and temperature dependence of k, the optical depth t (mea-
sured from the top of the atmosphere) at some wavenumber
at some height in the atmosphere is proportional to three
quantities: the overlying air mass (which is proportional to

FIG. 1. Total instantaneous forcing Ftot calculated using RRTMG in a snapshot of a cloud-resolving RCE simulation
plotted as circles for various CO2 concentrations using (a) tropopause all-sky fluxes, (b) TOA all-sky fluxes, (c) TOA
clear-sky fluxes (in which condensates have been zeroed), and (d) TOA dry-sky fluxes (in which condensates and
water vapor have been zeroed). The lines are least squares fits. The r2 values exceed 99% in all cases.
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pressure p), the volume fraction q of the longwave absorber,
and the absorption coefficient k. In other words, t ∝ pqk,
where we are using the standard symbol of ∝ for proportion-
ality (i.e., if y = ax for some a Þ 0, then y ∝ x). Emission to
space occurs from the vicinity of the emission pressure pem,
defined to be the pressure in the atmosphere where t equals
one. Therefore, in the proportionality t ∝ pqk, we can set t to
1 and p to pem, which gives pem ∝ 1/(qk). Taking the loga-
rithm3 of both sides reveals that log(pem) is linear in log(qk),

log pem( ) ∼2log qk( ): (1)

We will refer to this below as property 3. Here and through-
out, we use the symbol ∼ to denote a linear relationship; that
is, if y = ax1 b for some aÞ 0 and bÞ 0, then y ∝= x, but y ∼ x.
We have retained a minus sign in relation (1) as a reminder
that an increase in log(qk) pushes the unit optical depth to
higher altitudes, leading to a decrease in log(pem). Ignoring the
pressure and temperature dependence of k, relation (1) is true
for any atmosphere with a single well-mixed absorber; we will
see in section 5d that relation (1) also holds to good approxi-
mation when those dependencies are included.

As a visual guide, we will use an analogy to a freight train
to describe Earth’s radiation to space from within the 15-mm
band. In this analogy, the train track runs flat along Earth’s
surface until it slopes upward through the troposphere and
into the stratosphere. The train straddles the troposphere
with its head in or near the stratosphere and its tail on the sur-
face. The cargo carried by the train are all the wavenumbers
of the 15-mm band, with each train car carrying a same-sized
set of those wavenumbers. Furthermore, each car has a spotlight
pointing upward, sending infrared radiation directly to space
with an intensity that depends on temperature: as a train car
climbs upward to colder parts of the atmosphere, its light dims.
All of the spotlights dim with ascent in the same way, so moving
the train forward by one car has a simple effect on the emission
to space: it effectively moves one train car from the warm sur-
face to the cold stratosphere. Finally, if the train moves forward
by, say, one train car every time the CO2 concentration is dou-
bled, then every doubling of CO2 effectively moves one train
car from the surface to the stratosphere, dimming its spotlight
accordingly; indeed, we will see that the train moves in this way.
What makes this analogy to a freight train particularly apropos
is that, like a real freight train, each train car is the same length
(there are no short cars or long cars), each car holds the same
amount of stuff (in this case, equal-sized sets of wavenumbers),
and all the cars move with the same speed.

For CO2 in an otherwise transparent Earth-like atmosphere,
there are five properties that combine to make this train analogy
work (i.e., that make the forcing from CO2 approximately
logarithmic in its concentration q for q in the range of 4 to
4096 ppmv). These properties are as follows:

1) For carbon dioxide concentrations of 4 to 4096 ppmv}
a range that encompasses all values experienced on Earth

within the past 300 million years (Berner 2006) as well as any
plausible values for the remainder of the Anthropocene}
the forcing from carbon dioxide is dominated by the 15-mm
band; this tells us that focusing on our 15-mm “freight
train” is warranted.

2) For a given pressure and temperature, the wavenumbers
in the 15-mm band are distributed approximately uni-
formly within an interval of log(k); this tells us that the
train cars hold same-sized sets of wavenumbers.

3) Even when accounting for the pressure and temperature
dependencies of k, log(pem) ∼ 2log(qk) is valid to good
approximation [i.e., Eq. (1) still holds]; this tells us that
the train cars move together (as they should for a train!)
and by how much they move for a given change in the
carbon dioxide concentration.

FIG. 2. Functions of wavenumber ñ: (top) F23
ñ ñ, 256ppmv( ), the

spectral forcing, shown here smoothed by a 2 cm21 moving win-
dow, caused by a doubling of CO2 from 256 to 512 ppmv in
IsoStrat, a dry atmosphere with a troposphere sandwiched between
an isothermal 205-K stratosphere (p , 104 Pa) and a 289-K surface
(p = 105 Pa); (middle) carbon dioxide absorption coefficient k
calculated at a temperature of 289 K and a total air pressure of
1 bar given in units of m2 per mole of carbon dioxide molecules;
and (bottom) the solid-angle-integrated spectral blackbody
Planck emission pB for two different temperatures (205 and
289 K).

3 Unless given a subscript, all logarithms are natural logarithms,
i.e., with base e.
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4) For carbon dioxide concentrations ranging from 4 to
4096 ppmv, wavenumbers with the lowest k in the 15-mm
band have an optical depth much less than one at the sur-
face while the wavenumbers with the highest k have an
optical depth of one near the tropopause or in the strato-
sphere; this tells us that rear of the train is on the surface
and the head of the train is in or near the stratosphere.

5) For tropospheric temperatures, 15 mm is where the tem-
perature dependence of the Planck distribution is nearly
independent of wavenumber; this tells us that the spot-
lights all dim in the same way as they ascend.

Figure 3 illustrates how these facts combine to generate the
logarithmic forcing of carbon dioxide. By virtue of property 1,
we can focus on the 15-mm band, whose wavenumbers have
been grouped into seven sets (or “train cars”), schematically
represented by the black circles. The wavenumbers could be
grouped into many more sets}even an uncountably infinite
number}but seven sets are depicted here for simplicity of

illustration.4 On the left side of Fig. 3, the wavenumbers are
shown as uniformly distributed over an interval of log(k) in
accordance with property 2. By property 3, log(pem) is linear
in log(k), so the wavenumbers are also distributed uniformly
over an interval of log(pem). (For wavenumbers that have an
optical depth less than one at the surface, we can still calculate
pem by imagining that we replace the surface with a hydro-
static, semi-infinite atmospheric layer of the same tempera-
ture. This has no effect on the radiative fluxes from those
wavenumbers above the surface, but it has the benefit of allow-
ing us to visualize how the emission pressures of those wave-
numbers approach the surface.) Consistent with property 4, the

FIG. 3. Explanation of why the forcing from carbon dioxide is logarithmic in its concentration.
Each black circle denotes an equal-sized set of wavenumbers. (first axis) By property 1, we can
focus on the 15-mm band, which, by property 2, has its wavenumbers uniformly distributed within
an interval of log(k). (second axis) By property 3, this implies that the wavenumbers are uni-
formly distributed within an interval of log(pem). Consistent with property 4, the head of the
“train” of wavenumbers is in the stratosphere and the rear of the train is in the surface. (third
axis) By property 3, log(pem) is linear in log(q), so multiplying q by successive multiplicative
factors (e.g., doublings) moves the train to lower log(pem) by the same amount. Here, a doubling
is illustrated as moving the train up by one car. By property 5, the Planck distribution is approxi-
mately a function of temperature only, so a set of wavenumbers emitting to space from the warm
surface temperature (red colors) has been effectively replaced by an equal-sized set of wavenum-
bers emitting to space from the cold stratosphere (blue colors). (fourth axis) Another doubling
moves another equal-sized set of wavenumbers from the surface to the stratosphere. The size of
the set of wavenumbers moved from the surface to the stratosphere is proportional to log(q), so
the forcing is proportional to log(q). As a visual aid, the light-gray circles mark where the train
was for q = q0.

4 Each of these seven sets of wavenumbers (or “train cars”) can
be thought of as the set of spectral intervals that have log(k) within
one of seven non-overlapping ranges. Section 6 gives a more pre-
cise definition, which reveals that a train car has contributions
from all wavenumbers, but primarily from those with similar
log(k).
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high values of log(pem) are below the surface and the low val-
ues of log(pem) are in the stratosphere. By property 3, log(pem)
is also linear in log(q), so each doubling of the CO2 concentra-
tion q moves the train of wavenumbers to lower log(pem) by
the same amount. This is depicted in Fig. 3 with one doubling
moving the train upward by one car length and two doublings
moving the train upward by two car lengths.

We see, therefore, that an increase in the CO2 concentration
has a simple effect: it replaces some number of train cars in the
surface with an equal number of train cars in the stratosphere
(Pierrehumbert 2010, 2011; Wilson and Gea-Banacloche 2012;
Jeevanjee et al. 2021). Since these train cars represent equal-
sized sets of wavenumbers emitting to space, this means that a
set of wavenumbers emitting to space at the surface temperature
has been effectively replaced with an equal-sized set of wave-
numbers emitting to space from the stratospheric temperature.
Then, using property 5, we can ignore the Planck distribution’s
explicit dependence on the wavenumber; this makes the Planck
distribution a function of temperature only [i.e., B = B(T)].
Therefore, wavenumbers emitting to space from the surface
are sending to space a spectral flux equal to pB(Tsurf) and
wavenumbers emitting to space from the stratosphere are
sending to space a spectral flux equal to pB(Tstrat). If Dñ is
the size of the set of wavenumbers effectively moved from
the surface to the stratosphere by a doubling of carbon diox-
ide, the change in forcing from a doubling is

F23 � p B Tsurf( ) 2 B Tstrat( )[ ]
Dñ:

Since every doubling of concentration effectively moves a set
of the same size Dñ, we get this same added forcing from each
doubling. Or, for a more general change in concentration,
Dñ ∝ Dlog pem( ) ∼ Dlog q( ), so the total forcing from carbon
dioxide is approximately logarithmic in its concentration;
that is, F tot ∼ log(q). This holds for concentrations within
roughly 4 to 4096 ppmv. For concentrations below 4 ppmv,
the head of the train is too close to the surface and so
property 4 no longer holds. For concentrations above 4096 ppmv,
other bands of CO2 start to generate substantial forcing

(e.g., Zhong and Haigh 2013) and so property 1 no longer
holds.

As we have seen, the derivation of logarithmic forcing
hinges on the validity of properties 1 through 5. Section 5 will
explore these properties in more detail and show that they
hold for carbon dioxide in an Earth-like atmosphere.

4. Model atmospheres

We will describe here the five model atmospheres used
throughout the paper. All of the atmospheres are dry, trans-
parent to shortwave radiation, hydrostatically balanced with
Earth’s gravitational constant, and have temperature profiles
that are piecewise linear in the logarithm of pressure. The first
three atmospheres are IsoAtmo (a cold isothermal atmo-
sphere sitting on top of a warm surface), IsoStrat (a cold iso-
thermal stratosphere that is separated from the warm surface
by a troposphere with an Earth-like lapse rate), and StdAtmo
(an atmosphere in which both the troposphere and strato-
sphere have Earth-like lapse rates).

Figure 4 plots the temperature profiles of those three
atmospheres as black curves. The gray curve in each of the
panels is the global area-weighted mean of atmospheric tem-
perature during year 2020 in the ERA5 reanalysis (Hersbach
et al. 2020), plotted from the surface (at 105 Pa), through the
cold-point tropopause (at 104 Pa), and up to the top of the
stratosphere (at 102 Pa). Noting that the ordinate is the loga-
rithm of pressure, we see that the global-mean temperature
can be approximated as two pieces linear in log(p) that con-
nect a near-surface air temperature of 289 K, to a tropopause
temperature of 205 K, and back up to a stratopause tempera-
ture of 261 K.

IsoAtmo, shown in the left panel, places a cold isothermal
atmosphere directly on top of the warm surface. Here, as
throughout the paper, the surface is represented by a semi-
infinite atmospheric layer with the same gas composition as
the other layers; this is done purely for the purposes of visuali-
zation and has no impact on the radiative fluxes at pressures
below 105 Pa. In reality, placing a cold isothermal layer

FIG. 4. The temperature profiles of three model atmospheres: (from left to right) IsoAtmo, IsoStrat, and StdAtmo. The area-weighted
mean of atmospheric temperature during year 2020 in the ERA5 (gray).
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directly on top of a warm isothermal layer would induce vig-
orous convection, but IsoAtmo is a well-defined atmosphere
that will serve an important purpose: it will demonstrate that
the logarithmic forcing persists even without a continuously
varying temperature profile.

IsoStrat, shown in the middle panel, has a troposphere with
a realistic lapse rate, but has a stratosphere that is isothermal.
The advantage of this atmosphere is conceptual simplicity:
the surface and stratosphere are isothermal, and so the move-
ment of sets of wavenumbers from the surface to the strato-
sphere has a straightforward radiative effect. Fortunately, this
simplicity is largely retained in the real atmosphere because
the stratosphere has a mean lapse rate}defined here as
dT/dlog(p)}whose magnitude is only one-third as large as
the troposphere’s: dT/d log(p) is 84 K in the troposphere and
228 K in the stratosphere. Therefore, we will find that the
logarithmic nature of the forcing is retained in StdAtmo,
which is the atmosphere shown in the right panel of Fig. 4.

These three atmospheres, plus two others, are defined in
Fig. 5. The HotStrat and DeepTrop atmospheres are modifi-
cations of IsoStrat in which the stratosphere is given the same
temperature as the surface (HotStrat) or the troposphere is
made much deeper (DeepTrop). HotStrat and DeepTrop will
be used in sections 9 and 10.

5. The five properties

a. Property 1: Dominance of the 15-mm band

We saw in the top panel of Fig. 2 that F23(256 ppmv) in
IsoStrat is dominated by the 15-mm band. Figure 6 shows,
using the line-by-line model, that the 15-mm band dominates
over a wide range of CO2 concentrations in StdAtmo (the
most realistic of the model atmospheres). The solid curve
shows the fraction of F tot generated by wavenumbers in the
15-mm band (recall that F tot is the TOA upwelling flux with-
out the CO2 minus the TOA upwelling flux with the CO2).
The dashed curve shows the fraction of F23 (change in F tot

from a doubling of CO2) that is caused by wavenumbers in
the 15-mm band. Since F23(q) is defined as the change in forc-
ing from q to 2q, the value at 2048 ppmv corresponds to dou-
bling from 2048 to 4096 ppmv. We see that, for concentrations
ranging from 4 to 4096 ppmv, the 15-mm band is responsible
for the majority of the forcing, ranging from 89% to 97%
for F tot and from 61% to 98% for F23. Between 2048 and

4096 ppmv, the bands of CO2 centered at 15, 10, 7.6, 5, and
4.3 mm contribute 61%, 27%, 6%, 5%, and 1% to F23,
respectively, indicating that bands at shorter wavelengths start
to make substantial contributions to the forcing at these large
concentrations (Zhong and Haigh 2013). At preindustrial and
current concentrations, the 15-mm band is responsible for
96% of F tot and 82%–86% of F23.

b. Property2: Uniform distribution of log(k)

The top-left panel of Fig. 7 shows, in the solid curve, the
probability distribution function (PDF) of the log(k) values
within the 15-mm band calculated at the surface (1 bar and
289 K) using the line-by-line model. The dashed curve depicts
a uniform distribution for illustration. We see that the line-
by-line PDF approximates a uniform distribution over a
remarkable six orders of magnitude. The bottom-left panel
of Fig. 7 shows the corresponding cumulative distribution

FIG. 5. For x ≡ log10(p/Pa), the temperature (in K) for each atmosphere (columns)
within each range of x (rows).

FIG. 6. Fraction of Ftot in StdAtmo that is generated by the
15-mm band (solid). Fraction of F23 in StdAtmo that is generated
by the 15-mm band (dashed).
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function (CDF) of the k values (i.e., the integral of the
PDF). The integral of a uniform distribution, shown by the
dashed curve, is an upward-sloping line with values
bounded below and above by zero and one, respectively.
We see that the line-by-line CDF approximates this closely.
The right column plots the PDF and CDF in the strato-
sphere (0.01 bar and 233 K). Note that the distribution
remains approximately uniform, but has shifted to lower k

by a factor equal to the ratio of pressures; this behavior will
be explained in section 5c.

The uniform distribution is also apparent when looking at
the spectrum as a function of wavenumber. The top-left part
of Fig. 8 shows the absorption coefficient k ñ( ) for the 15-mm
band plotted on a log axis and calculated using the line-by-
line model at 1 bar and 289 K. Property 2 is apparent from
the approximately linear decay of log(k) as a function of
wavenumbers from the center of the band.

Let us now resort those wavenumbers in order of increasing
k, as is done in the k distribution method (e.g., Stephens
1984), which is a standard technique in radiation parameteri-
zation. Let the function CDF be the cumulative distribution
of k values within the 15-mm band at this pressure and tem-
perature, which was shown in the bottom-left panel of Fig. 7.
In other words, CDF(k) is the fraction of the 400-cm21-wide
interval of wavenumbers that have an absorption coefficient
less than k. The inverse of this, CDF21, maps the interval
[0, 1] to absorption coefficients in a monotonically increasing
way. We can then define k′ ñ( ) as

k′ ñ( ) � CDF21 ñ 2 ñ1
ñ2 2 ñ1

( )
, (2)

where ñ1 � 467 cm21 and ñ2 � 867 cm21 are the boundaries of
the 15-mm band. By construction, this function is simply a
resorting of the original absorption coefficients. It is plotted
as the dashed curve in Fig. 8, and it is nothing more than the
curve in the bottom panel of Fig. 7 with the axes swapped.
Note that log(k′) is nearly linear in wavenumber.

The lower-left part of Fig. 8 plots the Planck distribution
within the 15-mm band at temperatures of 205 and 289 K. We
see that the difference between the two Planck distributions is
nearly independent of wavenumber, consistent with property 5.
Section 5f will show that this is sufficient for us to ignore the
wavenumber dependence of the Planck distribution for the pur-
poses of understanding the forcing. Once this approximation is
made, the only physical property that depends on wavenumber
is k. Therefore, we are free to resort the wavenumbers so long
as we keep track of the corresponding k values. In particular, we
can replace k with k′ in calculations of the forcing without
affecting the answer.

To go a step further, we can approximate the spectrum
shown in the left panel of Fig. 8 with the k shown in the right
panel. This represents k p0, ñ( ) at p0 = 105 Pa and it is written
mathematically as

k p0, ñ( ) � k0ebñ ñ1 , ñ , ñ2

0 otherwise,

{
(3)

with ñ1 � 467 cm21 and ñ2 � 867 cm21. Fitting Eq. (3) to the
k′ in the left panel using least squares, we find best-fit coeffi-
cients of k0 = 8.43 10215 m2 mol21 and b = 0.04 cm. Equation
(3) is nearly all of the spectroscopic information that is
needed to construct a model of the forcing from carbon

FIG. 7. (top left) Probability distribution function (PDF) of the values of log10[k/(m
2 mol21)] within the 15-mm band

calculated at 1 bar and 289 K using the line-by-line model. The dashed curve depicts a uniform distribution for illustra-
tion. (bottom left) The corresponding cumulative distribution functions (CDFs). (right) As in the left column, but for
0.01 bar and 233 K (the temperature there in StdAtmo).
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dioxide. The only remaining detail is to specify how k varies
with pressure.

c. Linearity of k in pressure

In section 3, we ignored any pressure or temperature
dependence of k when we derived relation (1). We will now
show that relation (1) continues to hold even with those
dependencies.

The value of k at any particular wavenumber has contribu-
tions from spectral lines representing many different vibra-
tional and rotational transitions of CO2, and each of those
lines has a shape that varies with temperature and pressure.
To get an indication of how this sum of contributions might
change with pressure and temperature, we can use the
Lorentz line shape. The Lorentz line shape can be derived
from first principles with some approximations (e.g., Van Vleck
and Weisskopf 1945) and is supported empirically within
about 100 line widths of the line center (Pierrehumbert 2010).
Although line-by-line models use a line shape that deviates
from this, especially far from the line center, the Lorentz line
shape is adequate for our discussion here.

With a Lorentz line shape, the absorption coefficient due to
a single line centered at ñc is

k � S T( )
pg

g2

g2 1 ñ 2 ñc( )2 ,

where the line width g can be represented by

g � g0
p
p0

T0

T

( )n

with an n that varies from line to line but is typically around
0.5 (Pierrehumbert 2010). This line shape is plotted in the left
panel of Fig. 9 using g = 0.1 cm21.

Although both the line intensity S and line width g depend
on temperature, it is the dependence of g on pressure that
tends to dominate the changes in line shapes as we move up
and down in the atmosphere (Pierrehumbert 2010). Far from
the line center (ñ 2 ñc .. g), when pressure is varied isother-
mally, k varies linearly with pressure. The right panel of Fig. 9
plots ­log(k)/­log(p) to illustrate this point: everywhere
except for the vicinity of the line center, this derivative is
unity, indicating a proportionality with respect to pressure.

To the extent that the prominent spectral lines of CO2 are
sufficiently well spaced, this result tells us that most of the
15-mm band should scale linearly with pressure. Thus, it might
be sufficient to approximate k as linear in pressure throughout
the entire band. It is not obvious a priori that this should
work since there are also temperature dependencies of the
individual line shapes and line strengths, but it does work in
many cases and it is a common approximation (Pierrehumbert
2010). To demonstrate the approximate linearity in pressure,

FIG. 8. (top left) Plots of the absorption coefficient k ñ( ) of carbon dioxide at 1 bar and 289 K (solid) and the
resorted k′ ñ( ) defined in Eq. (2) (dashed). (bottom left) The Planck distributions at temperatures of 205 and 289 K.
(top right) The simple model’s absorption coefficient k ñ( ), which is exponential in ñ. (bottom right) The simple mod-
el’s Planck distributions, which have no explicit dependence on wavenumber.
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Fig. 10 plots k calculated from the line-by-line model as a
function of pressure level for 4000 equally spaced wavenum-
bers in each of three different atmospheres (IsoAtmo, Iso-
Strat, and StdAtmo). To avoid the figures becoming saturated
with color, the individual curves are plotted using a translu-
cent color. We see that, regardless of the thermal structure of
the atmosphere, the vast majority of the wavenumbers have k

values that increase quasi-linearly as we move to higher pres-
sure in the atmosphere. The lower-right panel quantifies this
by plotting three histograms (one for each atmosphere) of the
slopes of the best-fit lines to each of the 4000 curves. Less
than 2% (1%, 3%) of the slopes in IsoAtmo (IsoStrat,
StdAtmo) case are negative. We see that the slopes are
clumped around unity, demonstrating the quasi-linear depen-
dence of k on pressure.

Since the k values are approximately linear in p, we can
generalize Eq. (3) to give a simplified model for k at any
pressure:

k p, ñ( ) �
p
p0

k0ebñ ñ1 , ñ , ñ2

0 otherwise:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (4)

This equation, together with the constants given at the end of
section 5b, is all of the spectroscopic information we need
about carbon dioxide to understand its forcing for concentra-
tions in the range of 4 to 4096 ppmv.

d. Property 3: log(pem) ∼ 2log(qk)

Now that we have this simple model for k, it is straightfor-
ward to reassess the validity of relation (1). For a single well-
mixed greenhouse gas, the longwave optical depth is defined as

t p, ñ, q( ) �
�p

0

dp
gm0

fqk: (5)

Here, g is the gravitational acceleration (9.81 m s22), dp/g is the
differential overlying air mass per area, q is the volume fraction
of the greenhouse gas (e.g., 256 ppmv), k is the absorption co-
efficient (i.e., the absorption cross section per molecule), m0 is
the mean mass per molecule of air (29 g mol21), and f = 5/3
is the diffusivity factor used to approximate an integration
over the hemisphere of propagation directions (Elsasser 1942).
Substituting the expression for k from Eq. (4), this gives

t p, ñ,q( ) �
fp2qk0
2gp0m0

ebñ ñ1 , ñ , ñ2

0 otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (6)

As before, we can define the emission pressure pem as the
pressure level where t = 1. Setting t to one in Eq. (6) and
solving for pressure, we get

pem ñ,q( ) �
�����������
2gp0m0

fqk0

√
e2bñ=2 ñ1 , ñ , ñ2

‘ otherwise:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (7)

Here, an infinite pem ñ,q( ) means that the emission to space
at wavenumber ñ emanates from the surface regardless of q;
recall that, in this simple model, carbon dioxide has no
absorptivity outside of ñ1 to ñ2. Using Eq. (4), we can write
Eq. (7) as pem � ������������������������

2gp0m0=fqk p0, ñ( )√
. Taking the logarithm

of this, we find that we recover property 3, which states that
log(pem) ∼ 2log(qk), so long as we interpret the term k in this
linear relation as being evaluated at some reference pressure.

e. Property 4: Head in the stratosphere and rear in
the surface

With Eq. (7), we can evaluate whether property 4 is true,
that is, if the head of the wavenumber train is in or near the

FIG. 9. (left) Absorption coefficient k for a single spectral line with a Lorentz line shape with width g = 0.1 cm21.
The absorption coefficient is plotted as a function of distance (in wavenumber) from the line center, and it is plotted as
normalized by the value at line center. (right) The change in log(k) for this spectral line per change in log(p), keeping
temperature constant. Where the value is one, k scales linearly with pressure.
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stratosphere and if the rear of the wavenumber train is in the
surface. Using the values for b and k0 obtained in section 5b,
we can calculate the minimum and maximum emission
pressures from Eq. (7) as pem ñ2,q( ) and pem ñ1,q( ), which
correspond to the head and rear of the train, respectively. Fig-
ure 11 plots these as functions of q from 4 to 4096 ppmv. At
all of these concentrations, the rear is in the surface. At
modern concentrations, the head is in the stratosphere. At
4 ppmv, the head of the train is in the upper troposphere at
300 mbar, but we will see in section 7 that this is close
enough to the tropopause to make F23 nearly as large (75%
as big) as it is when the head of the train is well ensconced in
the stratosphere.

Only those wavenumbers emitting to space from above the
surface contribute to F tot. Those are the wavenumbers whose
k p0, ñ( ) exceeds 2gm0/fqp0. For q = 4 (256, 4096) ppmv, these

are the wavenumbers with k p0, ñ( ) exceeding 0.9 (0.01, 8 3

1024) m2 mol21. The middle panel of Fig. 2 can be used
to identify the wavenumbers in the original (unsorted)
spectral space that contribute to F tot at each of these
concentrations.

f. Property 5: Wavenumber independence of the Planck
distribution

If we approximate all of a wavenumber’s radiation to space
as coming from its emission pressure, then the spectral forcing
from a doubling of concentration is

F23
ñ ñ,q( ) ≈ pB ñ,T pem ñ,q( )[ ]{ }

2 pB ñ,T pem ñ, 2q( )[ ]{ }
: (8)

We see that F23
ñ does not depend on the overall magnitude of

B, but on how much it changes with respect to temperature.

FIG. 10. Translucent plots of k ñ,p,T p( )[ ]
as a function of p for 4000 equally spaced samples of ñ from 467 to 867 cm21

for the (top left) IsoAtmo, (top right) IsoStrat, and (bottom left) StdAtmo atmosphere. The bar in log10 k( ) represents an
average over log10(p/Pa) from 2 to 5. (bottom right) For each case, the histogram of the best-fit slopes for each of the 4000
wavenumbers.
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Likewise, F23, which is simply an integral of F23
ñ , depends

only on how B changes with temperature and not its overall
magnitude. Therefore, if the change in B with temperature
is independent of the wavenumber to good approximation,
then we can approximate B as having no explicit depen-
dence on wavenumber (as was depicted in the right col-
umn of Fig. 8).

In Earth’s troposphere, the globally averaged temperatures
range from 205 to 289 K. We need to know, therefore,
whether B ñ, 289K( )2 B ñ, 205K( ), for the various ñ within
the band, can be approximated as B ñ0, 289K( )2 B ñ0, 205K( ),
where ñ0 is the wavenumber in the middle of the band. For
this to be true, we would need dB/dT at the midtropospheric
temperature of 247 K (the average of 205 and 289 K) to
be independent of ñ in the vicinity of ñ � ñ0. In other
words, we would need d2B=dTdñ � 0 at T = 247 K and
ñ � 1= 15mm( ) � 667cm21. By differentiation of the Planck
distribution, we find that d2B=dTdñ � 0 when ñ � xkT=hc,
where x is the solution to x = 4(1 2 e2x)/(1 1 e2x), which
evaluates to x ≈ 3.83. For the midtropospheric temperature of
T = 247 K, this gives ñ � 658cm21 � 1= 15:2mm( ), confirming
that the 15-mm band is ideally situated for property 5 to be
valid.

We can also check property 5 numerically. For any particu-
lar wavenumber ñ in the band, the relative error (RE) caused
by ignoring the wavenumber dependence of B is

RE � B ñ0, 289K( ) 2 B ñ0, 205K( )
B ñ, 289K( ) 2 B ñ, 205K( ) 2 1:

For a band that is 400 cm21 wide like the 15-mm band of CO2,
the root-mean-square (RMS) of this relative error (RMSRE)
across all the wavenumbers in the band is

RMSRE �
��������������������������������������������������������������������������

1
400 cm21

� ñ01200cm21

ñ02200cm21
dñ

B ñ0,289K( )2B ñ0,205K( )
B ñ ,289K( )2B ñ ,205K( ) 2 1

[ ]√
2
:

(9)

This RMSRE is plotted in Fig. 12 as a function of ñ0. We see
that the center of the 15-mm CO2 band is located almost
exactly where the RMSRE is minimized. For the 15-mm band,
replacing ñ with ñ0 � 667 cm21 in the Planck distribution gen-
erates a root-mean-square relative error of only 7%. Since the
purpose of this paper is understanding the origin of carbon
dioxide’s logarithmic forcing, this error is perfectly accept-
able. In recognition of property 5, we will henceforth write
the Planck distribution as a function only of temperature [i.e.,
as B(T)] with the understanding that it is evaluated at a wave-
number of ñ0 � 667 cm21, that is,

B � B T( ) � 2hñ30c
2

ehcñ0=kBT 2 1
: (10)

6. The log(p) axis

To visualize a greenhouse gas’s radiative forcing, we need
to derive the weighting function for emission to space, but, to
do that, we must first choose an appropriate vertical axis. We
learned in section 3 that, by virtue of relation (1) and the
particular spectrum of CO2, the wavenumbers in the 15-mm
band are uniformly distributed within an interval of log(pem).
This suggests that the most natural vertical coordinate for
understanding the radiative forcing from carbon dioxide is

FIG. 11. The locations of the train’s head and rear, pem ñ2, q( ) and
pem ñ1, q( ), as functions of the CO2 concentration q.

FIG. 12. Error [RMSRE from Eq. (9)] produced by ignoring the
explicit wavenumber dependence of the Planck distribution, plot-
ted as a function of the center of a hypothetical 400 cm21-wide
band. The 15-mm band of carbon dioxide is located close to where
this error is minimized.
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not pressure p or height z, but the logarithm of pressure
log(p). In fact, the case for using log(p) as the vertical coordi-
nate goes even deeper: not only is it natural to use for CO2,
but the log(p) axis is also a natural vertical axis to use for any
generic greenhouse gas with k ∝ p.

To see why, note that the spectral flux to space of infrared
radiation can be written as

Spectral flux to space �
�‘

0
pBe2t dt: (11)

From the expression for t in Eq. (5), we know that t ∝ p2 so
long as k ∝ p. This then implies that dt = 2td log(p). This rela-
tion allows us to transform the expression in Eq. (11) from an
integral over t to an integral over log(p):

Spectral flux to space �
�‘

2‘
pB 2e2tt︸︷︷︸

≡flog p( )

d log p( ), (12)

where we see that

flog p( ) ñ,p,q( ) ≡ 2e2tt (13)

is the spectral weighting function for emission to space on the
axis of log(p). In other words, flog(p) ñ,p,q( )d log p( ) is the
fraction of emission to space at wavenumber ñ that emanates
from between log(p) and log(p) 1 d log(p). Integrating flog(p)

over all log(p) gives a value of one: this can be checked by
noting that flog(p)d log(p) = e2tdt. Figure 13 plots flog(p) for
several different concentrations q that all differ by factors of
2. Note that Fig. 13 is not specific to carbon dioxide: it applies
to any atmosphere with a single well-mixed greenhouse gas
whose absorption coefficients are proportional to pressure.

Since flog(p) is a function only of t, and since t ∝ qp2, we
can conclude that flog(p) satisfies the following identity:

flog(p) ñ,p,q′( ) � flog(p) ñ, p
������
q′=q

√
,q

( )
: (14)

When plotted on a log(p) axis, this means that an increase in
gas concentration from q to q′ preserves the shape of flog(p)

and simply moves it down the log(p) axis a distance of log(q′/q)/2.
For example, a doubling of the greenhouse gas concentration
moves the emission to space to lower log(p) by an amount
log(2)/2; this behavior is evident in Fig. 13. These same prop-
erties also carry over to the broadband weighting function for
emission to space clog(p), defined as

clog(p) p,q( ) �
�‘

0
dñflog(p) ñ,p, q( ): (15)

This is the “train” of emission to space that was alluded to in
section 3, where each clog(p)(p, q)dlog(p) (with dimensions of
inverse length) can be thought of as a car of that train. Since
individual wavenumbers emit to space not just from pem, but
from all pressures [with weights given by flog(p)], we see now
that each train car has contributions from all wavenumbers,
although it is those wavenumbers with pem near p that con-
tribute most to clog(p)(p, q)dlog(p).

If we were to use a different vertical coordinate f p( ) ∝= log p( ),
such as f(p) = p, then the spectral weighting function on the f(p)
axis ff(p) would be related to flog(p) by

ff (p) ñ,p,q( ) � d log p( )
df p( ) flog(p) ñ,p,q( ):

Since the factor dlog(p)/df(p) is a function of p Þ t, ff(p) can-
not be written as a function solely of t, and so it does not
obey the identity given in Eq. (14). Therefore, a change in q is
not equivalent to shifting ff(p) down the f(p) axis. Thus,
log(p) is the natural vertical axis for simple models of radia-
tive transfer that approximate k as either k � p=p0

( )
k p0, ñ( ), as

done above, or as k � k ñ( ).5 Fortunately, since log(p) is
approximately proportional to the geometric height z, this is
also a somewhat intuitive vertical axis. The log(p) axis will be
used exclusively throughout the remainder of this paper, so
we will henceforth drop the subscript log(p) from weighting
functions for notational simplicity.

7. Simple model of the forcing

We now have the pieces we need to derive an analytic
expression for the forcing from carbon dioxide. Noting that t
is proportional to p2, and that t = 1 when p � pem ñ,q( ), we can
write t as

FIG. 13. Weighting function flog p( ) ñ,p,q( ) of emission to space
for any atmosphere with a single well-mixed greenhouse gas whose
absorption coefficients are proportional to pressure. The rightmost
curve has q = q0 and so peaks where log p( ) � log pem ñ,q0( )[ ]

.
Curves for eight other values of q are also plotted with the value of
q labeled just under the peak of each curve.

5 When k is independent of pressure, a change in concentration
from q to q′ moves c down the log(p)axis by an amount log(q′/q)
instead of log(q′/q)/2.
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t ñ,p, q( ) � p2

pem ñ ,q( )2 : (16)

As we learned in the previous section, the spectral weighting
function f is 2e2tt. Therefore,

f ñ, p,q( ) � 2 exp 2
p2

pem ñ ,q( )2
[ ]

p2

pem ñ ,q( )2 : (17)

This applies to any atmosphere with a sole greenhouse gas
whose k scales like p.

To calculate the broadband weighting function c, we need
to know the details of the function pem ñ,q( ). In our simple
model of carbon dioxide, pem ñ,q( ) takes the form of Eq. (7),
which encodes the fact that the wavenumbers of carbon diox-
ide’s 15-mm band have a uniform distribution on log(k). Using
Eqs. (7), (15), and (17) to calculate c (see the appendix for
details), we get

c p,q( ) � 2
b

e2p2=pem ñ1,q( )2 2 e2p2=pem ñ2,q( )2
[ ]

: (18)

This is plotted in Fig. 14 for q = 256 ppmv as the curve labeled
by n = 2. Note that the magnitude of c is 2/b = 50 cm21. Math-
ematically, Eq. (18) is closely related to a boxcar function: if
the exponents of 2 are replaced with an integer n that is then
taken to infinity, we obtain a boxcar function, that is,

lim
n→‘

e2pn=pem ñ1,q( )n 2 e2pn=pem ñ2,q( )n[ ]
� 1 pem ñ2, q( ) , p , pem ñ1,q( )

0 otherwise:

{
(19)

The same boxcar function for c would be obtained if the fac-
tors of 2 in Eq. (17) for f were replaced with n and taken to
infinity; in that limit, f ñ,p,q( ) � d log p( )2 log pem ñ,q( )[ ]{ }
and wavenumbers emit to space exactly from their pem. As is
evident from Fig. 14, the n = ‘ boxcar limit is a decent
approximation for the real n = 2 case, at least for the purposes
of understanding the behavior of the forcing and its overall
magnitude.

The total forcing F tot is the integral of dlog(p)c(p, q) times
the difference between pB at the surface temperature (which
is the spectral flux emitted to space if q = 0) and pB at the
temperature T(p). Mathematically, this is

Ftot q( ) �
�‘

0
dlog p( )c p,q( )p B Tsurf( ) 2 B T p( )[ ]{ }

: (20)

If we use the boxcar approximation, this becomes

Ftot q( ) ≈ 400 cm21pB Tsurf( )

2
2p
b

� log pem ñ1 ,q( )[ ]
log pem ñ2,q( )[ ]

dlog p( )B T p( )[ ]
: (21)

Note that this depends on q only through the limits of integra-
tion, and a change in log(q) of dlog(q) changes both limits by
2dlog(q)/2 (because pem ∝ q21/2). Therefore,

dFtot

dlog q( ) ≈
p

b
B T pem ñ1,q( )[ ]{ }

2 B T pem ñ2,q( )[ ]{ }[ ]
: (22)

The change in forcing for a doubling is approximately equal
to this derivative times log(2), that is,

F23 ≈ p log(2)
b

B T pem ñ1, q( )[ ]{ }
2 B T pem ñ2,q( )[ ]{ }[ ]

: (23)

If the stratosphere is isothermal and if, as q changes,
pem ñ2,q( ) remains greater than the surface pressure and
pem ñ1,q( ) remains within the stratosphere, then the two
Planck terms will be constant, giving

F23 ≈ p log(2)
b

B Tsurf( ) 2 B Tstrat( )[ ] ≈ 5W m22: (24)

In this regime, the forcing from a doubling of CO2 is indepen-
dent of concentration; this is the well-known logarithmic
dependence of forcing on the concentration of CO2.

While the boxcar approximation is appealing for its simplic-
ity, the forcing is also straightforward to calculate when using
the more accurate expression for c in Eq. (18). The first panel
of Fig. 15 plots this c for CO2 concentrations of 256 (cyan),
512, 1024, and 2048 ppmv (purple) using the values of b and
k0 found in section 5b. As expected, c retains its shape and
moves to lower log(p) by an amount log(2)/2 for each dou-
bling of concentration. The second panel of Fig. 15 plots the
temperature profile of the IsoStrat atmosphere.

To visualize where in the atmosphere the forcing is
being generated, note that we can write Eq. (20) as

Ftot � �‘
0 d log p( )Ftot

log p( ) p,q( ), where

FIG. 14. Plot of c, the broadband weighting function for emission
to space, from Eq. (18) (blue). Plots of Eq. (18) with the exponents
of 2 replaced with other positive integers (gray). Plot of Eq. (18)
with the exponents of 2 replaced with ‘ (black).
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Ftot
log p( ) p, q( ) � c p,q( )p B Tsurf( ) 2 B T p( )( )[ ]

(25)

is what we will refer to as the total baric forcing [“baric”
denoting per log(p) interval, just as “spectral” implies per
wavenumber interval]. In particular, Ftot

log p( ) p,q( )d log p( ) is the
contribution to the total forcing caused by emission to space
coming from between log(p) and log(p) 1 dlog(p) instead of
from the surface. Note that a log(p) interval contributes to
the forcing only if there is emission to space from that interval
[i.e., if c(p, q) . 0] and if the temperature in that interval dif-
fers from the surface [i.e., if T(p) Þ Tsurf]. The third panel
of Fig. 15 plots Ftot

log p( ) p,q( ) and the fourth panel plots

F23
log p( ) p,q( ) ≡ Ftot

log p( ) p, 2q( )2 Ftot
log p( ) p,q( ). Note that all of the

contribution to F23
log p( ) is in the stratosphere: the total forcing is

increased by the introduction of new sets of wavenumbers
emitting to space from the stratosphere. Note that the shape
of the tropospheric temperature profile does not matter for
F23: all that matters is the temperature difference between
the train’s head and rear, which are in the stratosphere and
surface, respectively.

Equations (7), (18), and (20) form a simple model for the
radiative forcing of carbon dioxide that can be used to esti-
mate the forcing (for concentrations in the range of 4 to
4096 ppmv) in any atmosphere (in which there are no clouds,
aerosols, or other greenhouse gases). The left panel of Fig. 16
shows F23 calculated from this simple model for various con-
centrations in the IsoAtmo, IsoStrat, and StdAtmo atmos-
pheres. The IsoAtmo forcing matches the boxcar prediction
of 5 W m22 because the head and rear of the wavenumber
train are well within regions of the atmosphere with tempera-
tures of 205 and 289 K, respectively. The IsoStrat and
StdAtmo forcings start at a lower value of 4 W m22 at 4 ppmv
because the head of the train is in the upper troposphere,
which is warmer than the tropopause. The StdAtmo forcing
peaks when the head of the train is near the cold-point tropo-
pause; since temperature rises with height in the StdAtmo
stratosphere, further increases in concentration lead to a

decrease in F23. For all three cases, however, F23 remains
around 4–5 W m22 over 10 doublings of concentration.6 The
right panel of Fig. 16 plots Ftot relative to a concentration
of 4 ppmv to illustrate how similarly logarithmic all three
cases are.

8. Behavior of the real case

In the preceding sections, we learned that the simple model’s
broadband weighting function c has a magnitude of 2/b and it
shifts to lower log p by log(2)/2 for every doubling of q. In other
words,

c p,q( ) � c logp 1
1
2
logq

( )
≈ 2
b
: (26)

We should expect the real c, as calculated by a line-by-line
model, to approximately exhibit these same properties.

To calculate c from a line-by-line model, we need the emis-
sion pressures for a dense sampling of wavenumbers. The pro-
file of the absorption coefficient k is first obtained from the
line-by-line model. That k profile (m2 mol21) is then multi-
plied by the number density of carbon dioxide (with units of
mol m23) and integrated over height to get the t profile, at
which point we can find the pressure where t equals one.
Once we have these emission pressures (pem,i indexed from 1
to 40 001 to cover 467 to 867 cm21 sampled at 0.01 cm21), we
evaluate the integral in Eq. (15) to get the broadband weight-
ing function:

FIG. 15. For 256 ppmv (cyan) to 2048 ppmv (purple) in powers of 2 using the best-fit values for b and k0 from section 5b,
(from left to right) the broadband weighting function c from Eq. (18), the temperature profile in the IsoStrat atmo-
sphere, the total baric (per logarithm of pressure) forcing Ftot

log p( ) from Eq. (25), and the baric forcing from a doubling of

concentration F23
log p( ) p,q( ) ≡ Ftot

log p( ) p, 2q( )2 F tot
log p( ) p,q( ), respectively.

6 It is worth emphasizing how very logarithmic all of these cases
are. When Ftot is perfectly logarithmic, i.e., Ftot ∼ log(q), then the ratio
of the maximum F23 to the minimum F23 over these 10 doublings
is one: [log(4096) 2 log(2048)]/[log(8) 2 log(4)] = 1. This is the case
for IsoAtmo. For StdAtmo, the ratio exhibited in Fig. 16 is about
5/4 = 1.25, which is quite close to one. In contrast, if F tot ∼ q, as in
the case of very weakly absorbing gas, the ratio over 10 doublings
would be (4096 2 2048)/(8 2 4) = 512. Or, if F tot ∼ ��

q
√

, the ratio
would be

�������
4096

√
2

�������
2048

√( )
=

��
8

√
2

��
4

√( ) � �����
512

√ ≈ 23.
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c p,q( ) � 0:01 cm21( ) ∑40 001
i�1

2 exp 2
p2

pem,i q( )2
( )

p2

pem,i q( )2 : (27)

Figure 17 plots this broadband weighting function at CO2

concentrations ranging from 4 to 4096 ppmv in the StdAtmo
atmosphere. Although the shape of this line-by-line c has
more wiggles7 than in the simple model’s c of Fig. 15, we see,
as expected, that the line-by-line c covers the same-sized
swath of log(p), it has an overall magnitude of about 2/b =
50 cm21, and it moves down the log(p) axis by log(2)/2 for
every doubling of concentration [for the 10 doublings shown,
c shifts a total distance of 10log(2)/2].

Consequently, the line-by-line model generates forcings
that are similar to those generated by the simple model. The
top row of Fig. 18 plots the total baric forcing Ftot

log p( ) produced
by this line-by-line c for each of three atmospheres (IsoAtmo,
IsoStrat, and StdAtmo) for CO2 concentrations ranging from
256 to 2048 ppmv by powers of two. Comparing to the total
baric forcing in Fig. 15, we see that the line-by-line model
increments the forcing in a way that closely resembles the pre-
diction from the simple model. The bottom row of Fig. 18
plots the TOA forcing as calculated by the line-by-line model
for each of the three atmospheres. We see, as expected, that
the forcing is still logarithmic in the IsoAtmo atmosphere
even without a tropospheric lapse rate. We also see that the

magnitude of the forcings is largely independent of the atmo-
spheric temperature profile (so long as the range of tempera-
tures is the same), and that the magnitude agrees with that
predicted by the simple model.

9. Lapse-rate theory is not relevant to carbon dioxide

In contrast to the success of the simple model constructed
in sections 3–7, we will see here that the lapse-rate theory
is neither necessary nor sufficient as an explanation for the
logarithmic forcing of carbon dioxide. The derivation of the
lapse-rate theory is as follows. As discussed in section 5d,
t is proportional to qp2. Approximating the tropospheric

FIG. 16. (left) F23 calculated from Eqs. (7), (18), and (20) using k0 = 8.43 10215 m2 mol21 and b = 0.04 cm for the
IsoAtmo, IsoStrat, and StdAtmo atmospheres. (right) As in the left panel, but for F tot.

FIG. 17. As calculated from the line-by-line model, the broad-
band weighting function c for the 15-mm CO2 band in StdAtmo for
CO2 concentrations ranging from 4 to 4096 ppmv by 10 factors
of 2. Marked on the plot is the value of 2/b diagnosed from Fig. 8.
Also indicated is 10log(2)/2, which is the distance that c is expected
to move down the log(p) axis after 10 doublings of the CO2

concentration.

7 At low CO2 concentrations, the wavenumbers with the lowest
absorptivity (near the edges of the 15-mm band) emit to space
from deep in the subsurface layer, where extreme collisional
broadening has a homogenizing effect on the distribution of k,
causing emission pressures to cluster, which generates the peak in
c around 100 bar. This high pressure phenomenon has no effect
on the forcing since the shape of c in the isothermal subsurface
has no effect on upwelling fluxes in the atmosphere. The subsur-
face c is plotted only to illustrate the fraction of wavenumbers that
are in the surface.
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temperature profile as T = Tsurf 1 Glog(p/psurf) for some cons-
tant G (with units of K), then p = psurfexp[(T 2 Tsurf)/G] and
t ∝ qexp(2T/G). Solving for the emission temperature Tem

where t = 1, we get Tem ∼ 2Glog(q). To the extent that the
Planck distribution can be approximated as linear in tempera-
ture (i.e., B ∼ Tem), then the spectral flux emitted to space is
linear in 2Glog(q), and so the total forcing is linear in
Glog(q).

This derivation did not require a uniform distribution of
log(k), but it does implicitly assume that all of the wavenum-
bers contributing to the forcing remain in the troposphere as
q is varied. Since the wavenumber train of carbon dioxide’s
15-mm band does not satisfy this condition, the lapse-rate the-
ory is inapplicable. In fact, we can go a step further and show
that the existence of a tropospheric lapse rate}a key compo-
nent of the lapse-rate theory}is neither necessary nor suffi-
cient for carbon dioxide’s logarithmic forcing.

Lapse-rate theory is not necessary to explain the logarith-
mic forcing of carbon dioxide because the logarithmic forcing

can be retained even in the absence of a troposphere. Figure 19a
illustrates this using the simple model with IsoAtmo. As
shown in the rightmost panel, F23 (the area under each
F23
log p( ) curve) is the same for each doubling despite the

absence of a troposphere.
Lapse-rate theory is not sufficient to explain the logarithmic

forcing of carbon dioxide because, even in the presence of a
realistic troposphere, the logarithmic forcing is eliminated
if the stratosphere and surface have the same temperature.
Figure 19b illustrates this using the simple model with HotStrat.
Although Tem is linear in log(q) for wavenumbers emitting to
space from the troposphere, F23 is zero because the head and
rear of the train are at the same temperature.

10. When can lapse-rate theory be applicable?

The lapse-rate theory can work only when the wavenum-
bers contributing to the forcing keep their emission levels in
the troposphere as q is varied. This is most easily achieved if

FIG. 18. (top) Plots of the total baric (per logarithm of pressure) forcing Ftot
log p( ) calculated with the line-by-line model for CO2 concentra-

tions ranging from (cyan) 256 ppmv to (purple) 2048 ppmv by factors of 2 for the (left) IsoAtmo, (center) IsoStrat, and (right) StdAtmo
atmospheres. The area to the left of each of these curves is equal to Ftot. Compare these curves to the plots of Ftot

log p( ) in the simple model in
Fig. 15. (bottom) Gray diamonds plot F23 calculated with the line-by-line model and black circles show the contribution to F23 from the
15-mm band. Compare these data to the plots of F23 in the simple model in Fig. 16.
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the wavenumbers all have the same emission level (i.e., if they
all have the same k). A hypothetical greenhouse gas that has
this property is a best-case scenario for the lapse-rate theory.
In this hypothetical case, the spectral weighting function
f ñ,p,q( ) would be independent of ñ within the band, so c

would simply be the width of the band (in inverse length)
times f.

For how many doublings of concentration could this hypo-
thetical band’s t = 1 level remain in the troposphere? The tro-
posphere spans log(10) in the logarithm of pressure, and, as
shown in section 6, each doubling of the gas concentration
reduces log(pem) by log(2)/2. Therefore, log(pem) for any
given wavenumber can remain in the troposphere for no
more than log(10)/[log(2)/2] 2 1 ≈ 6 doublings of concentra-
tion. This would seem to suggest that the hypothetical gas
could produce a logarithmic forcing in Earth’s atmosphere}
via the mechanism of the lapse-rate theory}over six dou-
blings of concentration.

In fact, however, the logarithmic dependence would not
hold for six doublings. The reason why is that the spectral
weighting function is not a delta function located at pem, but is

the broad distribution f centered on pem. The spectral weight-
ing function f is so broad that it barely fits inside the tropo-
sphere and so nearly always includes significant chunks of
either the surface or stratosphere. This is illustrated in Fig. 20.

The left column of Fig. 20 plots f from Eq. (17) for some
wavenumber using q equal to 228q0 (blue), q0 (red), and
28q0 (green), where q0 is defined to be the concentration that
makes pem = 1 bar. There are three rows in Fig. 20, each using
a different model atmosphere (IsoAtmo, IsoStrat, and Deep-
Trop), and the second column plots the temperature profiles
of those atmospheres. The third column of Fig. 20 plots the
product of f and pB; when integrated over log(p), this gives
the wavenumber’s spectral flux to space. The fourth column
plots the spectral forcing for this wavenumber from a doubling
of q. The circles mark the forcing at every factor of 2 in q. Only
in DeepTrop does f fit comfortably inside the troposphere and,
therefore, a logarithmic forcing is generated.

Note that Fig. 20 is not specific to carbon dioxide; it applies
to any sole well-mixed greenhouse gas with k ∝ p. If k is not
proportional to p, then matters become even worse for the
lapse-rate theory because f is then even broader. While the

FIG. 19. As in Fig. 15, but for (a) IsoAtmo and (b) HotStrat. These demonstrate that lapse-rate theory is neither neces-
sary nor sufficient to generate the logarithmic forcing from carbon dioxide.
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lapse-rate theory does not work for well-mixed greenhouse
gases in Earth’s atmosphere, it could work in other atmos-
pheres with tropospheres that span a larger log(p). That
would be possible, for example, with a smaller gravitational
acceleration or higher specific heat capacity.

11. Summary

Over a wide range of concentrations, the forcing from car-
bon dioxide is approximately logarithmic in its concentration.
It is tempting to attribute this behavior to the troposphere’s
lapse rate, but this is not the correct explanation. Indeed, the
forcing from carbon dioxide is largely independent of the tro-
pospheric temperature profile (see Figs. 16 and 18) and its
logarithmic dependence persists even when the atmosphere is
isothermal (so long as the surface is warmer; see the IsoAtmo
results in Figs. 16 and 18).

Instead, the logarithmic forcing of carbon dioxide can be
understood by analogy to a freight train carrying the wave-
numbers of the 15-mm band (which dominates the forcing by
property 1) from the surface to the stratosphere. The train
cars hold same-sized sets of wavenumbers (property 2)
grouped by their coefficient of absorptivity; or, more

accurately, the train cars carry same-sized chunks of the emis-
sion to space, cdlog(p), as defined in Eq. (15). Since the train
cars all move together by dlog(pem) = 2dlog(q)/2 (property 3
combined with k ∝ p from pressure broadening), and since
the head of the train is in the stratosphere and the rear is on
the surface (property 4), and since the radiative emission to
space dims the same for all the cars as they rise (property 5),
each doubling of CO2 concentration effectively moves the
same-sized chunk of emission to space from the surface to the
stratosphere, reducing the total emission to space by the same
amount for each doubling. Thus, we arrive at the well-known
empirical fact that the total forcing from carbon dioxide scales
as the logarithm of its concentration. Using c (the broadband
weighting function for emission to space) and Ftot

log p( ) (the total
baric forcing, which depicts where in the atmosphere the forc-
ing is generated), we can visualize the underlying mechanism
for this logarithmic forcing in both a simple model (Fig. 15)
and a line-by-line model (Figs. 17 and 18).
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APPENDIX

The Broadband Weighting

To derive the broadband weighting c for carbon dioxide,
let us make two observations. First, the expression for f in
Eq. (17) can be written as

f � 2e2e2x e2x,

where x ≡ log(p) 2 log(pem). Second, using the expression for
pem in Eq. (7), we can deduce that d log pem( )=dñ � 2b=2.
Using these two facts, we can calculate the broadband weight-
ing function for the 15-mm band of CO2 (in an atmosphere
where well-mixed CO2 is the only greenhouse gas) as follows:

c p,q( ) �
� ñ2

ñ1

dñ f ñ,p,q( ) (A1)

�
� log pem ñ2,q( )

log pem ñ1 ,q( )
dlog pem( ) dlog (pem)

dñ

( )21

f (A2)

� 2
2
b

� log pem ñ2 ,q( )

log pem ñ1,q( )
dlog pem( ) f (A3)

� 2
b

� log p2log pem ñ2 ,q( )

logp2log pem ñ1,q( )
dx 2e2e2x e2x (A4)

� 2
2
b

� log p2log pem ñ2,q( )

log p2logpem ñ1,q( )
d e2e2x
( )

(A5)

� 2
b

e2p2=pem ñ1,q( )2 2 e2p2=pem ñ2,q( )2
[ ]

: (A6)
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